我们介绍了CGAPOSENET+GCAN,它通过使用几何Clifford代数网络(GCAN)增强了CGAPOSENET,这是相机姿势回归的架构。添加GCAN,我们仅从RGB图像中获得了相机姿势回归的几何感知管道。cgaposenet使用Clifford几何代数将四元组和翻译向量统一为单个数学对象,即电动机,可用于独特地描述相机姿势。cgaposenet可以在其他方法中获得综合结果,而无需调查损失功能或有关场景的其他信息,例如3D点云,这可能并不总是可用。cgaposenet就像文献中的几种方法一样,只学会了预测运动系数,并且没有意识到预测位于其几何含义的数学空间。通过利用几何深度学习的最新进展,我们从GCAN上修改了CGAPOSENET:从InceptionV3背骨中获得与摄像机框架相关的可能的运动系数的建议,然后通过在G 4,0中使用的一组层来,将它们通过单个电动机为单个电动机。网络的工作是几何意识,具有多活性价值in-
基于运动图像(MI)的大脑计算机界面(BCI)应用旨在分析大脑如何与脑电图(EEG)信号与外部环境相互作用。尽管当前的模型取得了令人鼓舞的结果,但从EEG信号中开发了MI的准确分类仍然是一个重大挑战。在本文中,我们设计了一个名为(ORDWT_AR)的MI分类模型,该模型利用过度完整的理性扩张小波变换(ORDWT)以及自动回归(AR)模型。首先,使用滑动窗口方法将脑电图分割为间隔。然后,每个脑电图通过ORDWT传递以分析EEG信号。因此,从每个段获得了一系列停止频段。然后,将AR与ORDWT集成,以从每个EEG间隔中提取代表性特征。选定的功能被发送到多种分类模型中,包括加权K-Nearest邻居(WKNN),决策树(DTREE)和Boosted树(BST)。使用四个基准EEG数据库评估所提出的模型,其中三个是从脑部计算机界面(BCI)竞争III中收集的,一个是从CHB-MIT中收集的。结果表明,提出的模型ORDWT_AR与WKNN分类器相结合的三个BCI竞赛III数据集的平均分类精度为99.8%,CHB-MIT数据集的平均分类精度为99.7%。获得的结果表明,所提出的方案是对脑电图信号进行分类并具有出色结果的有前途的工具。提议的模型可以支持专家帮助残疾人与环境互动并提高生活质量。
微生物群落在各种环境中起关键作用。预测它们的功能和动力学是微生物生态学的关键目标,但是这些系统的详细描述可能是非常复杂的。一种处理这种复杂性的方法是诉诸于更粗糙的表示。几种方法试图以数据驱动的方式识别微生物物种的有用群体。最近的工作在从头发现时,使用像线性回归这样简单的方法来预测给定功能的粗略表示,对多个物种甚至单个这样的群体(Ensemble-Biterient优化(EQO)方法)进行了一些经验成功。将社区功能建模为单个物种贡献的线性组合似乎很重要。但是,确定生态系统的预测性过度的任务与预测功能的任务不同,并且可以想象,前者可以通过比后者更简单的方法来完成。在这里,我们使用资源竞争框架来设计一个模型,在该模型中,要发现的“正确”分组是良好的定义,并使用合成数据来评估和比较基于回归的三种方法,即先前提出的两个和我们介绍的两个方法。我们发现,即使函数明显非线性,基于回归的方法也可以恢复分组。该多组方法比单组EQO具有优势。至关重要的是,模拟器(线性)方法的表现可以胜过更复杂的方法。
在机器人或其他物理系统上部署深层神经网络时,学到的模型应可靠地量化预测性不确定性。可靠的不确定性允许下游模块推理其行动的安全性。在这项工作中,我们解决了不确定性量化的指标。具体来说,我们专注于回归任务,并研究稀疏误差(AUSE),校准误差(CE),Spearman的等级相关性和负模样(NLL)下的区域。使用多个数据集,我们研究了这些指标在四种典型类型的不确定性下的行为,它们在测试集的大小上的稳定性以及揭示其优势和缺点。我们的结果表明,校准误差是最稳定,最容易解释的度量,但是Ause和NLL也具有各自的用例。我们不建议您评估不确定性的Spearman等级相关性,并建议用Ause代替它。
本文在贝叶斯范式中重新表述了赵等人(2021b)的协变量辅助主(CAP)回归。该方法确定了多变量响应数据协方差中与协变量相关的成分。具体而言,该方法估计一组多元响应信号的线性投影,其方差与外部协变量相关。在神经科学中,人们对分析来自大脑不同区域的脑信号时间序列之间的统计依赖性很感兴趣,我们将其称为功能连接(FC)(Lindquist 2008;Fornito 和 Bullmore 2012;Fornito 等人 2013;Monti 等人 2014;Fox 和 Dunson 2015)。功能连接背后的大脑信号是多变量的,在分析功能连接时,每个大脑活动都被视为与其他大脑活动的相对关系(Varoquaux 等人,2010),因为这种统计依赖性与行为特征(协变量)相关。本文开发了一种贝叶斯方法对反应信号进行监督降维,以分析外部协变量与以多变量信号的协方差为特征的功能连接之间的关联。通常,分析大脑功能连接的第一个步骤是定义一组对应于感兴趣的空间区域(ROI)的节点,其中每个节点都与其自己的图像数据时间过程相关联。然后,根据每个节点时间过程之间的统计依赖性(van der Heuvel 和 Hulshoff Pol,2010;Friston,2011),估计网络连接(或节点之间的“边缘”结构)。 FC 网络是使用 Pearson 相关系数( Hutchison 等人,2013 年)以及部分
摘要:电池老化是一种复杂的现象,精确的健康状态 (SoH) 监测对于有效的电池管理至关重要。本文提出了一种基于支持向量回归 (SVR) 的数据驱动 SoH 估计方法,利用从全放电和部分放电容量曲线以及电池温度数据构建的特征。它深入讨论了从不同电压间隔构建的新特征。此外,分析了三种特征组合,展示了它们的功效在不同电压范围内的变化。使用从 2 到 3.4 V 的完整间隔构建的全放电容量曲线获得了成功的结果,并且在测试集上实现了 0.962 的平均 R 2 值,从而展示了所选 SVR 策略的充分性。最后,将从全电压范围构建的特征与从 10 个小电压范围构建的特征进行了比较。观察到了类似的成功,证据是不同电压范围内的平均 R 2 值介于 0.939 和 0.973 之间。这表明所开发的模型在现实场景中具有实际适用性。所提出的模型的调整和评估是使用丰田创建的包含 124 个磷酸铁锂电池的大量数据集进行的。
摘要 - 需要准确评估电动汽车 (EV) 电池的健康状态 (SoH),以管理其性能、安全性和使用寿命。本研究旨在提出一种使用随机森林回归 (RFR) 模型的数据驱动方法来准确预测 SoH。该方法基于历史电池性能数据来训练 RFR 模型,该模型对于捕获输入特征和 SoH 指标之间的复杂非线性关系特别有用。基于模型的方法需要电化学模型,而数据驱动的方法通常依赖于广泛的实验室测试,而我们的方法展示了一种计算高效、灵活且准确的方法,该方法适用于多种电池类型和用例。它使用电压、电流、温度和充电/放电速率等关键特征作为预测因子,从而可以全面检查当前和以前的电池行为。该模型已根据各种基准数据集进行了评估,并显示出高水平的准确性和稳健性。
建议引用:Adekunle, Ibrahim Ayoade;Maku, Olukayode Emmanuel;Williams, Tolulope O.;Gbagidi, Judith;Ajike, Emmanuel O. (2023):非洲的自然资源禀赋和增长动态:面板协整回归证据,AGDI 工作论文,编号 WP/23/015,非洲治理与发展研究所 (AGDI),雅温得
。cc-by 4.0国际许可证是根据作者/资助者提供的,他已授予MedRxiv的许可证,以永久显示预印本。(未通过同行评审认证)
这项研究利用一系列机器学习算法来预测Ikpoba河的小时流量。数据收集依赖于沿河沿线安装的水透度系统,收集每小时测量量高度,环境温度和大气压。将量规高度转换为流量数据,从Ikpoba河等级曲线中提取了涵盖2015年至2020年期间的历史量规和流量数据,并使用曲线拟合技术对水流和量规高度之间的精确关系进行了分析。使用各种拟合度措施,例如调整后的R平方值,估计标准误差和确定系数,用于识别最佳拟合关系。随后使用土壤和水评估工具对估计的流量数据进行了验证,并结合了研究区域的数字高程模型,以及其他输入参数,例如土壤,坡度,每日最大降水量和每日最高温度。使用Microsoft Excel中生成的回归图进行了验证结果。从机器学习结果中,随机森林算法在预测流量方面的其他方法优于其他方法,均为0.02的均值误差和确定系数为0.98。相反,决策树在预测单个数据点方面表现出了较高的准确性,最低的根平方误差为0.02。