本研究使用自动喷雾热解系统提出了一种高通量筛选方法,通过将宽带gap辣椒质化与CUS相结合,以发现新型的P型透明导电材料(TCM)。此方法不仅消除了通常与传统材料筛查技术相关的停机时间,而且还可以显着减少制造时间,同时优化处理参数。通过整合实验和计算技术,该方法对材料中电导率和透明度的机制提供了深入的了解。与传统的方法相反,该方法通过掺杂宽带氧化物的掺杂来实现高性能P型TCM,而这种方法始于高导电性的P型材料,CUS,CUS,并通过掺入MG来提高透明度,从而削弱P – D耦合并引起不形态的MG。此过程导致CUS – MG候选者具有P-Type TCM的最高价值数字。该策略不仅引入了一种新的机制来解释观察到的特性,而且还建立了一个多功能框架,以加速各个领域的材料发现和优化。
图3。示意图显示了氧化还原介导的反应性分离机制:a)氧化还原反应驱动的不对称电吸附(左)和释放(右)。b)氧化还原物种(左)的不对称电吸收和解吸后反应性转化(右)。c)氧化还原电极的耦合反应和反应。
添加剂制造(通常称为3D打印)由使用数字计算机辅助设计(CAD)的各种制造工艺编译,并通过将连续的,分层的跨层应用于构建平台,并将其处理为3D物理对象。It possesses signi cant bene ts over its more traditional formative and subtractive manufacturing counterparts, such as: on-demand manufacturing, lower (o en zero) waste, rapid prototyping capabilities, high degree of customisability, global reach as les can be modi ed and sent anywhere in the world, and the ability to create complex geometries such as nested and moving structures or overhangs.1融合细丝制造(FFF)是一种添加剂制造,由于FFF打印机的相对较低的成本及其使用的简单性,因此广泛采用了。2它涉及挤出毫米尺度的热塑性聚合物通过加热喷嘴哀叹。打印头的运动将聚合物的薄横截面绘制到上一个,并在此冷却并固体以使nal 3d对象。广泛的商业哀叹
细胞技术的转变可能威胁到与旧电池类型有关的回收活动中投资的经济可行性。例如,虽然碎屑可用于多种阴极技术,镍锰钴(NMC)和铁磷酸锂(LFP)电池,这是该价值链后面的两种最常用的锂离子化学作用。阴极化学的演变甚至可能使现有和预期的政府法规难以实现。某些规则根据电池重量授权材料回收率。但是,回收钠离子电池可能无法达到这些速率,钠离子电池刚刚开始浮出水面,但比锂离子细胞更重,而且价值较少。
电池电动汽车(BEV)是被认为是减少运输部门的温室气体排放并解决气候变化的解决方案之一[1],[2]。BEV的足够市场渗透需要改善当前BEV的范围和成本[3]。因此,寻求提高电池的能量密度并提高牵引系统的整体效率。在这种情况下,本文遵循两个平行的改进轴:基于具有集成电池电池的级联的H桥逆变器(CHB-IB)[4] - [6]的创新电池子系统,以及能够在制动阶段增加能量回收率的能源管理策略的发展[7] - [10]。最近提出了一种基于CHB-IB的创新拓扑结构,以取代BEV的常规牵引系统。它由与集成电池电池组成的几个H桥转换器组成。他们为电动牵引力机提供最近的水平控制。以前的论文已经描述了这种新拓扑及其控制[11] - [13]。CHB-IB旨在履行电压源逆变器(VSI),电池管理系统(BMS)和充电器的角色。与常规拓扑相比,预计会有显着改善。先前的一项研究评估了新拓扑的效率[13]。在电牵引机的扭矩速度平面上确定了损耗图。
具有 CN 4 四面体三维骨架的碳氮化物是材料科学的伟大梦想之一,预计其硬度将高于或与金刚石相当。经过 30 多年的努力,仍然没有提供其存在的确凿证据。本文报道了在激光加热的金刚石压砧中高压高温合成三种碳氮化合物 tI 14-C 3 N 4 、hP 126-C 3 N 4 和 tI 24-CN 2 。利用同步加速器单晶 X 射线衍射解析和细化它们的结构。物理性质研究表明,这些强共价键合的材料具有超不可压缩和超硬的特性,还具有高能量密度、压电和光致发光特性。新型碳氮化物在高压材料中是独一无二的,因为它们是在 100 GPa 以上产生的,并且可以在环境条件下在空气中回收。
解构木质素时的主要目标是实现有用的产品或中间体的高收益,同时使不良副产品的形成成立,事实证明这是具有挑战性的。11要实现木质素向低分子量化合物的高转化,因此必须打破C - C键。12,13,例如,还原性催化分数(RCF)在很大程度上切割了C-C键完整14,芳香族单体的产量限制为15-30%。可以通过在高温和高压下的催化来实现木质素中的C - C键,但成本相对高。这激发了对替代方法的探索。在先前的工作中,我们报告了一种在环境温度或接近木质素中断裂C - C键的替代方法。这种方法将硫化与芬顿化学的解构结合在一起。在芬顿反应中,Fe 2+与过氧化氢反应,产生Fe 3+和高效的羟基自由基。17 - 19个先前的工作表明,芬顿反应产生的羟基自由基有效地裂解C - C键在磺酸聚合物(如木质磺酸盐)中,20,21种磺化聚乙烯,22和聚苯乙烯硫酸盐。23 - 25通过将硫基团添加到固定铁中,将氧化量反应定位于底物,从而导致这些聚合物有效分解至低分子量产物。Fenton反应在环境温度和大气压下进行。与需要能源密集型过程和高压反应器的方法相比,这是一个优势。此外,由于芬顿反应发生在水中,少量生物相容性铁作为催化剂,因此在生物转化之前几乎不需要后期处理。可以通过调整反应条件和试剂量(铁和H 2 O 2)来控制芬顿反应中实现的解构程度。可以对低分子量产物产物进行广泛的解剖,但是在解构的程度与通过过度氧化对挥发性化合物(例如CO 2)损失的碳量之间存在贸易。过度氧化还通过更大的氧化剂H 2 O 2的消耗导致成本增加。在这里,我们探索了来自Poplar的木质素的解构,Poplar是一种相关的生物能源原料,与用离子液体过程产生的富含糖流相关的26 a a e er分离。27我们先前的工作后,我们首先将杨树木质素磺化。28接下来,我们使用Fenton反应将磺化的木质素解散,表明我们可以通过不同的试剂浓度来控制解结和重聚的程度。然后,我们探索了分解产物的生物学可用性,并证明了分解产物向喷射燃料前体Bisabolene的转化。这项工作的目标是在整个过程中展示原理证明,包括转换为产品。下面我们报告结果并讨论了几个想法,以提高过程中每个步骤的收率。
对可持续能源解决方案的需求不断增长,将锂电池回收行业定位在全球创新和经济转型的最前沿。随着电动汽车,可再生能源存储和消费电子产品的增加,回收锂离子电池已成为解决资源稀缺和环境挑战的关键解决方案。认识到需要对这个迅速发展的行业进行全面分析,CAS和Deloitte共同努力开发了这份涵盖市场和科学观点的深入报告。作为美国化学学会的一个部门,专门从事科学知识管理,CAS提供了无与伦比的科学和技术专业知识,不断构建尖端信息解决方案和CAS Content Collection™,涵盖了超过150年的发现。Deloitte以其市场和业务分析而闻名,对行业动态和竞争力提供了深刻的了解。一起,我们的科学深度和业务敏锐度使我们能够对锂离子电池回收行业进行整体探索。本报告展示了这种独特的合作使理解和洞察力的深度和质量。通过利用CAS和Deloitte的综合优势,我们旨在提供可行的见解和解决方案,以应对当今的紧迫挑战并塑造明天的创新。对诸如药物开发,新材料,绿色能源或可持续性等关键领域的全面分析感兴趣?与我们联系。
对可持续能源解决方案的需求不断增长,将锂电池回收行业定位在全球创新和经济转型的最前沿。随着电动汽车,可再生能源存储和消费电子产品的增加,回收锂离子电池已成为解决资源稀缺和环境挑战的关键解决方案。认识到需要对这个迅速发展的行业进行全面分析,CAS和Deloitte共同努力开发了这份涵盖市场和科学观点的深入报告。作为美国化学学会的一个部门,专门从事科学知识管理,CAS提供了无与伦比的科学和技术专业知识,不断构建尖端信息解决方案和CAS Content Collection™,涵盖了超过150年的发现。Deloitte以其市场和业务分析而闻名,对行业动态和竞争力提供了深刻的了解。一起,我们的科学深度和业务敏锐度使我们能够对锂离子电池回收行业进行整体探索。本报告展示了这种独特的合作使理解和洞察力的深度和质量。通过利用CAS和Deloitte的综合优势,我们旨在提供可行的见解和解决方案,以应对当今的紧迫挑战并塑造明天的创新。对诸如药物开发,新材料,绿色能源或可持续性等关键领域的全面分析感兴趣?与我们联系。
1。需求:进行了市场分析以确定需求。2。方法:解释了满足确定需求的独特方法。3。益处:通过生命周期评估(LCA)(LCA)的技术经济评估(TEA)和环境影响评估用于确定主要的好处和其他比较方面。4。竞争:讨论了欧盟和SA中的竞争力量。
