该演示文稿由Nebraska University -Lincoln大学的环境与可持续性研究计划带给您免费和公开访问。已被授权的数字通信管理员@Nebraska University -Lincoln接受了它将环境参与的社区项目和产品纳入。
该演示文稿由Nebraska University -Lincoln大学的环境与可持续性研究计划带给您免费和公开访问。已被授权的数字通信管理员@Nebraska University -Lincoln接受了它将环境参与的社区项目和产品纳入。
多伦多证券交易所创业板及其监管服务提供商(该术语定义见多伦多证券交易所创业板的政策)均不对本新闻稿的充分性或准确性承担责任。本新闻稿可能包含前瞻性陈述,包括但不限于涉及未来事件和条件的评论,这些评论受各种风险和不确定性的影响。除历史事实陈述外,涉及资源潜力、即将开展的工作计划、地质解释、矿产产权的接收和保障、资金可用性等的评论均为前瞻性的。前瞻性
2.2.2.1调制旁路2.2.2.2蒸汽闪光灯2.3发动机夹克热恢复设备2.3.1发动机冷却2.3.1.1防冻剂2.3.1.2水夹克温度2.3.1.3施工2.3.2强制循环泵2.3.3润滑油2.3.3润滑油冷却2.4机油冷却2.4发动机热恢复液压器2.5燃气2.5燃气式隔离器2.7燃气式隔离器2.7燃气式辅助台2.7燃气涡轮机2.7。 Water-Cooled Condenser 2.7.2.1 Pressure-Operated Control Valve 2.8 AUXILIARY BOILER FOR SUPPLEMENTAL FIRING 2.9 HEAT EXCHANGERS 2.9.1 Fuel Oil Preheating Heat Exchanger 2.9.2 Condensate Heat Exchanger 2.10 HIGH TEMPERATURE WATER HEAT RECOVERY SYSTEMS 2.11 WATER TREATMENT EQUIPMENT 2.12 INSULATION 2.13 AIR-TO-AIR ENERGY RECOVERY DEVICES 2.13.1 Fixed Plate Heat Exchangers 2.13.1.1 Performance 2.13.2 Energy Recovery Wheel 2.13.2.1录音带构造2.13.2.2能量转移媒体
氮化物材料中的氮掺杂是改善材料特性的一种有希望的方法。的确,GESBTE相位变化合金中的N掺杂已证明可以极大地提高其无定形相的热稳定性,这是确保最终相变存储设备的数据保留所必需的。尽管建议这种合金中的N掺杂导致GE-N键的优先形成,但有关键的进一步问题,尤其是SB-N和TE-N,并且结构排列尚不清楚。在本文中,我们介绍了使用大量的N含量从0到50 at at 50 at,我们介绍了沉积的元素GE,SB和TE系统及其氮化物(即Gen,SBN和10合金)的研究。%。通过傅立叶变换红外和拉曼光谱法研究了AS沉积合金。我们确定与GE-N,SB-N和TE-N键形成相关的主动振动模式,强调了N融合对这些元素系统结构的影响。我们进一步定性地将Gen,SBN和十个实验光谱与相关理想氮化物结构的“从头开始”进行了比较。最后,对氮化元素层的分析扩展到N掺杂的GESBTE合金,从而在记忆技术中采用的此类三元系统中对氮键有更深入的了解。
DPC致力于鼓励和激励所有员工通过各级各级的员工意识积极参与计划的计划,以减少部门对环境的影响。这包括避免不必要的消费和废物产生,采用创新的资源回收和恢复策略,并评估我们的有限资源。为DPC减少和管理其废物产量,考虑了昆士兰州废物管理资源回收策略中列出的废物和资源管理层次结构和指导原则。
锂离子电池广泛用于各种消费和工业应用,包括智能手机、笔记本电脑、电动汽车和可再生能源存储系统。随着对这些电池的需求不断增长,对有效回收方法来管理报废电池的需求也在不断增长。锂离子电池回收涉及回收和再利用电池中所含的有价值材料,减少对新资源的需求,并最大限度地减少废弃电池对环境的影响。本期特刊邀请研究人员就锂离子电池回收先进技术的发展撰写原创研究/评论/观点文章。感兴趣的主题包括但不限于:- 直接回收(例如,直接回收和升级再造
对可持续和可行能源的需求不断增长,这推动了全球热解油市场。热解植物在没有氧气的情况下在非常高的温度下焚化废物,从废物塑料,聚合物,生物量以及废物橡胶和轮胎等来源获得热解油。由于其高热量价值,热解油可以用作工业燃料,以替代炉油或其他工业燃料。
这项工作是由洛杉矶水与电力部(LADWP)和鲍威尔基金会(Powell Foundation)和UCLA可持续洛杉矶大la Grand资助的更广泛项目的一部分。这项合作提供了对否则不可用的关键数据的访问权限,从而增强了模型提供更现实的结果的能力,尤其是与LADWP的决策过程有关。承认偏见的潜力,加州大学洛杉矶分校的卢斯金创新中心(LCI)和LADWP都致力于确保公正性,通过采用保守的假设,以应对合理的下一个项目的运营利益。此外,加州大学洛杉矶分校(UCLA LCI)保留了完全的创造性控制权和出版权,包括在发现可能与LADWP的利益不符的情况下。
更广泛的上下文电池供电的电动汽车是将运输集成到电网中的有前途的解决方案。但是,尚未广泛采用电动汽车的消费者,部分原因是成本较高,车辆行驶里程较小以及充电的不便。可以鼓励使用电动汽车的新电池化学的重要目标包括低成本,大型驾驶范围,许多周期和长架子。带有石墨阳极的电流,可充电的锂离子电池的能量密度太低,无法达到前两个目标,但是诸如硅等不同的阳极化学物质可以实现成本和范围目标。在硅阳极可以替代石墨阳极之前,仍然存在障碍,但是,由于静电期间硅体积较大及其高反应性表面的大量膨胀,这两者都会导致不可逆的容量损失。