解决方案 SABIC 全力支持通过回收旧塑料来闭合材料循环。我们专注于商业化回收率高的化合物和用于可提高可加工性和最终使用性能的含回收物化合物的增强树脂。SABIC 在整个价值链上努力开发这些解决方案并提高整体可回收性。
本文讨论了在恶劣环境下废热回收 (WHR) 的工业潜力——恶劣环境下废热回收的定义是废热流的温度至少为 650°C 或含有使热回收复杂化的反应性成分。分析涵盖五个行业(钢铁、铝、玻璃、水泥和石灰),选择这些行业是基于生产量、含有恶劣环境成分的废气排放量、回收比目前回收量多得多的热量的可能性以及目前缺乏可接受的 WHR 选项。这些行业在恶劣环境下产生的废热流中发现的总潜在能源节约相当于美国制造业损失的工艺热能的 15.4%(113.6 TWh)。评估了这些行业现有的技术和材料,并估算了每个工业部门可从恶劣环境气体中回收的废热。最后,对每个废热源的深入总结显示了废热可以在何处回收以及必须解决哪些具体问题。潜力最大的是钢铁高炉(46 TWh/年)。考虑的其他废热流包括钢电弧炉(14.1 TWh/年)、平板玻璃(3.6 TWh/年)、容器玻璃(5.7 TWh/年)、玻璃纤维(1.1 TWh/年)、特种玻璃(2.2 TWh/年)、铝熔炉(4.7 TWh/年)、水泥(17.1 TWh/年)和石灰(10.5 TWh/年)。尽管在恶劣环境中回收废热的尝试大多未获成功,但研究和技术的进步可能会释放出巨大的能源和成本节约潜力。
•自2020年3月以来,lithion的副总裁和CTO; •化学工程师•从想法到商业化的流程和产品的25年经验。•开发新的工艺和设备,用于材料的合成,转换和纯化。•2010年最近加拿大高级材料公司的创始人。由Oerlikon Metco在2017年获得。以前,Tekna等离子系统的研发和过程开发总监
Hydroprs™提供了更高的范围,用于回收所有主要类型的塑料,包括柔性和刚性的多层材料,目前通过传统的机械方法被视为“不可算”。它可以处理被污染和混合的,消费后塑料,因为该过程对纸张,纸板和有机物等有机污染物不敏感(例如食物残留物),意味着更广泛的可回收废物塑料。
当前的研究重点是开发有效的材料,以尽可能优化生产能的效率,以特别关注自由或低碳能。例如,储能是接下来几十年的最大挑战之一,是可再生能源的管理。毫无疑问,由于需要有效的废物管理,商品的回收和工业废水处理也是当前的主要问题。该特刊专门致力于在环境和能源领域的创新材料的开发。的贡献包括但不限于材料(碳,二氧化硅,混合材料…)等各种主题(电池,H2生产…),光伏细胞,光催化,储存或分离,废水处理,废水处理,废物处理,废物管理和原始金属提取。我们想借此机会邀请该领域的专家的捐款,这些专家被鼓励从该领域的基本方面和未来方向提交原始研究论文以及审查/迷你审查文章。
HydroPRS™ 为回收所有主要类型的塑料提供了更大的范围,包括柔性和刚性多层材料,这些材料目前被认为通过传统机械方法“不可回收”。它可以处理受污染和混合的消费后塑料,因为该工艺对有机污染物(如纸张、纸板和有机物(如食物残渣))不敏感,这意味着可回收的废塑料范围更广。
PV模块已达到生命的尽头(EOL),通常可以回收。2016-2017 IEA PVPS任务12研究由国家可再生能源实验室(NREL)资助和EPRI审查了欧洲的PV回收技术,包括四个商业玻璃和金属回收商,这些商用玻璃和金属回收器会定期处理PV模块的批次批次,并为一个PILOT SCALE RECCALE RECCALE PROCESSITY和一个用于PV Modules。1,2 Heath等。 表明,需要恢复高价值材料,例如硅和纯净的银,以改善回收的经济学。 3在过去的几年中出现了新的商业和演示规模的回收选择,其中包括一些声称收回硅和银的声称。 有限的公共数据可用于试点或商业设施的回收流程。1,2 Heath等。表明,需要恢复高价值材料,例如硅和纯净的银,以改善回收的经济学。3在过去的几年中出现了新的商业和演示规模的回收选择,其中包括一些声称收回硅和银的声称。有限的公共数据可用于试点或商业设施的回收流程。