维持马车交通。2 月 10 日,美国陆军尤马测试中心指挥官 Shane Dering 中校在拉巴斯县镇布斯举行的第 28 届布斯营日纪念仪式上发表主旨演讲。YPG 是二战时期加利福尼亚-亚利桑那沙漠机动区内最后一个现役陆军基地,布斯营是其中的一部分。YPG 当今的任务与 20 世纪 40 年代测试运河防御灯的士兵有着直接联系,运河防御灯是二战期间安装在布斯营 M3 坦克炮塔上的 1300 万烛光弧光探照灯。该系统从未投入使用,但当时该项目是仅次于曼哈顿计划的第二大机密陆军计划。Dering 在仪式上致辞时表示:“我很自豪尤马测试中心今天所做的工作处于当前陆军转型努力的前沿。” “我们今天在尤马测试中心测试的尖端火炮、战车和无人机将确保我们的军队保持对世界上任何侵略国的优势,从而确保我们国家在未来很长一段时间内的安全。我认为这一努力符合
微生物增强的石油回收(MEOR)是一种有前途的方法,可改善从哈萨克斯坦(Hazakhstan)等挑战性储层中的石油回收方法。Meor依靠微生物的活性来修改储层的性质,例如降低油粘度,增加储层渗透率,并产生动员油的副产品。在哈萨克斯坦实施MEOR可以通过增加化石燃料出口的石油产量和特许权使用费来为该国带来巨大的经济利益。哈萨克斯坦的石油生产近年来发生了波动,2018年的生产水平为1814亿桶。在地区,阿特劳地区用2340万吨的石油为石油生产做出了最大的贡献。在Atyrau之后,Mangystau地区生产了820万吨,Aktobe生产了240万吨。总体而言,在哈萨克斯坦的油田中使用Meor可以提供有前途的解决方案,以增强石油回收率,同时最大程度地减少环境影响和成本。虽然有关当前在哈萨克斯坦现场条件下使用MEOR的特定数据可能是有限的,但研究正在进行的事实表明,对将该技术应用于该国的油田越来越兴趣。一旦在现场运营中实施了他们的发现,这些研究可能会带来哈萨克斯坦石油行业带来的潜在好处,这是令人兴奋的。这些研究对哈萨克斯坦的石油生产具有重大影响。
1个可持续制造的高级材料研究所,墨西哥QUERETARO 76130的蒙特雷技术; gabriel.luna@tec.mx 2国立高等教育学院,莫雷利亚单位,梅Xico国家自主大学,前通往Tzcuaro No. div>8701,上校); MONSERRAT_RAMIREZ@TEC.MX(M.R.-M。)5分析与环境化学系,西南研究所,美国圣安东尼奥市Culebra Road 6220,美国德克萨斯州78238,美国; alice.yau@swri.org *通信:mburelo@tec.mx(m.b。); cdtrevino@tec.mx(C.D.T.-Q) div>
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
图3。示意图显示了氧化还原介导的反应性分离机制:a)氧化还原反应驱动的不对称电吸附(左)和释放(右)。b)氧化还原物种(左)的不对称电吸收和解吸后反应性转化(右)。c)氧化还原电极的耦合反应和反应。
结果:是存在的过程,但根据植物和植物的面积而对不同的细菌进行了不同。降低了TPC和TMC,最多可在2-3天内返回至IS水平。IS对冷却器中微生物的影响各不相同,降低了2-4 log 10,需要2到4周才能返回前IS水平。混合了靠近制造线的结果,一种植物的变化几乎没有显着变化,而另一个植物则显示了4至6 log 10减少。对QAC的耐药性和植物之间以及植物区域之间的生物膜对沙门氏菌的保护。在该属水平上对细菌的社区分析表明,物种的多样性降低,而破坏导致了新的社区组成,在某些情况下,即使在15到16周之后,这些组成也没有恢复到前州。
a 沙特阿拉伯哈伊勒大学工程学院工业工程系;b 伊拉克巴格达巴格达大学能源工程系;c 伊拉克卡尔巴拉瓦里斯安比亚大学工程学院;d 伊朗德黑兰塔比亚特莫达雷斯大学机械工程系;e 伊拉克巴格达法拉希迪大学医疗器械工程系;f 伊拉克巴士拉巴士拉石油天然气大学石油天然气工程系;g 加拿大自然资源部 CanmetENERGY 研究中心,加拿大渥太华;h 英国诺丁汉大学电力电子、机械与控制 (PEMC) 研究组;i 英国曼彻斯特大学工程学院流体与环境系曼彻斯特 CFD 团队
摘要:农产品副产品和微藻是具有神经保护特性的低成本、高价值的生物活性化合物来源。然而,治疗分子的神经保护效果可能受到其穿过血脑屏障 (BBB) 到达大脑的能力的限制。在本研究中,对已证明具有体外神经保护潜力的刺槐 (ASFE)、Cyphomandra betacea (T33)、小粒咖啡 (PPC1)、油橄榄 (OL-SS)、柑橘 (PLE100) 副产品和微藻 Dunaliella salina (DS) 的各种绿色提取物进行了基于永生化人脑微血管内皮细胞 (HBMEC) 模型的体外 BBB 通透性和运输测定。进行了毒性和 BBB 完整性测试,并在孵育 2 和 4 小时后使用气相色谱和液相色谱结合四极杆飞行时间质谱 (GC/LC-Q-TOF-MS) 评估了目标生物活性分子穿过 BBB 的运输情况。HBMEC-BBB 运输试验显示,代表性神经保护化合物(如单萜和倍半萜、植物甾醇和一些酚类化合物)具有高渗透性。从拟议的体外 BBB 细胞模型中获得的结果进一步证明了目标天然提取物的神经保护潜力,这些提取物是功能性成分的有希望的来源,可以转化为具有科学支持的神经保护声明的食品补充剂、食品添加剂或营养保健品。
摘要 酯酶已成为酶法聚酯回收的重要生物催化剂,将聚对苯二甲酸乙二醇酯 (PET) 回收为对苯二甲酸 (TPA) 和乙二醇 (EG)。本文介绍了基于酶法 PET 解聚的回收工艺的流程建模、技术经济、生命周期和社会经济影响分析,并与原始 TPA 制造进行了比较。我们预测酶法回收 TPA (rTPA) 具有成本竞争力,并强调了实现这一目标的关键领域。除了有利的长期社会经济效益外,rTPA 还可以将每千克 TPA 的总供应链能耗降低 69%–83%,温室气体排放量降低 17%–43%。一项针对美国经济的评估估计,TPA 回收工艺可减少高达 95% 的环境影响,同时产生高达 45% 的社会经济效益,这相对于原始 TPA 生产而言也是如此。敏感性分析突出了实现生物 PET 回收和升级再造的重大研究机会。
当两种成分不同的溶液混合时,会释放出混合的自由能。过去几十年来,人们深入研究了这种现象,以便获取所谓的盐度梯度能。电容混合 (CapMix) 是能够获取这种能量的最早的技术之一,其工作机制基于流体电化学电池,类似于超级电容器。由于这种混合现象适用于液体和气体,因此其想法是从人为 CO2 中获取能量。ERC 资助的 CO2CAP 项目首次提出利用绿色离子液体 (IL),即室温下的生物衍生熔盐,作为 CapMix 电池中的电解质和 CO2 吸收介质。其原理是在两个电极充电/放电期间,在 IL 中流动浓缩的 CO2 气流,交替进行真空步骤。CO2 将在电极/IL 界面处引起电荷的电双层 (EDL) 膨胀,从而将释放的混合能转化为电能。此外,我们预计,当存在热梯度以收集低品位废热时,也会出现类似的现象。本博士论文的主要研究目标包括(不一定全部):o 设计、制造和电/电化学表征定制流体超级电容器,利用创新架构能够