废水回收(WWHR)系统可以有效地重新捕获并立即重复使用损失到排水管中的能源的70%,从而以经济高效的方式减少能源消耗。这是一个合适的解决方案:一个简单的系统,没有运动部件,没有存储,没有控制系统,并且不需要电力才能运行。专门设计的热交换器将热能从废热淋浴水转移到传入的淡水供应,将其从大约10到30°C变暖。当冷水到达混合阀时,温度要温暖得多,因此,从热水器或太阳能电池板上需要少的热水。效率是从排水水中获得的能量的百分比,随着使用的系统而异,高达70%。
此外,玻璃纤维增强塑料 (GFRP) 和其他复合材料物品(例如船舶、飞机、汽车零件、风力涡轮机叶片等)的使用越来越多,导致废物积累率不断增长。通常情况下,GFRP 物品不易回收,因为组成材料基质的热固性树脂在固化过程之后不能轻易与增强纤维分离。因此,它们的生产、使用和报废遵循线性经济方案。目前,还没有针对这些材料的经济高效、环保或实用的回收解决方案。大多数情况下,它们只是被丢弃在垃圾填埋场;有时,为了节省处理成本,它们被非法遗弃在环境中,导致因纤维释放而造成的污染和潜在的健康问题。仅在欧洲,每年就有约 55 000 吨 GFRP 被送往垃圾填埋场 [9,10];尽管如此,欧盟还是设定了目标,到 2030 年,通过采用创新的回收/再利用方法,将最终进入垃圾填埋场的垃圾量减少 10%。[11]
世界上第一个可持续的便携式充电器之一很可能会出现在新加坡。Nanyang技术大学(NTU)机械工程师Carlo Charles,现年21岁,是奔跑中的创新者之一,以开发由纸电池提供的电子产品,这些电池可以用作安全且可持续的Ablealternativetivetivetivetolithium-ionbat-ionbat-teries。他的作品获得了好评,赢得了2月份国家青年理事会组织的青年行动挑战赛的大奖。自从儿童前提开始的狂热发明家是新加坡人,是NTU的一项新倡议,以支持企业家,这是周四在周四发起的40家创新者和初创企业之一。关注点一直在岩石宇宙电池上升高,在电力繁荣的情况下,供应量很短,并且会导致有毒废物。与锂离子细胞相比,纸电池通常被视为可持续性的纸电池的能量效率较低。的工作正在进行减少差距,他正在商业化纸电池中的查尔斯先生说。他们还花费的一半是标准电池的一半。与传统电池不同,可以将电池包裹在物体周围,而不是在情况下固定,从而使制造商的形状具有创造力。它们也是生物脱落的,防漏和非爆炸性,使其比标准电池更安全。全世界的研究人员都在建造纸电池。其中之一是瑞士联邦实验室材料科学技术,该实验室正在建造可生物降解的纸电池。Charles先生使用的电池是从2021年建造可生物降解电池的NTU团队获得许可的,最初是为了耗电装备。该电池是通过在一张增强纸的一侧打印墨水层的墨水层来制作的,一层
随着文明、科技和商品生产的发展,全球废弃物数量不断增加,造成了空气、土地和海洋的污染。 [1] 据估计,到 2050 年,废弃物产量可能达到 34 亿吨,是目前的两倍多。 [2] 为了解决这个迅速增长的问题,全球社会需要通过“从摇篮到坟墓”的方案,使用对环境影响微乎其微的可回收、零废弃和生物友好型材料,包括原材料的应用和基于绿色化学的整体加工。 [3,4] 合成表面活性剂及其降解产物是不断释放到环境中的最主要污染物之一。 [5] 这是因为表面活性剂被视为制造乳液的先决条件,乳液是两种不混溶液体在外部稳定的体系,
目前,尚无用于测定黑块样品中元素的行业标准方法。然而,电感耦合等离子体发射光谱法 (ICP-OES) 在许多与制造 LIB 所用化学品污染元素控制相关的标准方法中都有规定。例如,在中国,使用 ICP-OES 的标准方法包括 YS/T 928.4、GB/T 24533-2019、GB/T 26300- 202 和 GB/T 26008-2020。因此,LIB 原材料供应商和电池制造商广泛使用坚固稳定的仪器,如 Agilent 5800 垂直双向观测 (VDV) ICP-OES,来测定 LIB 原材料和组件中的元素(5 到 9)。5800 ICP-OES 的性能特点同样适用于包括 LIB 黑块材料在内的复杂电子垃圾样品的分析。
摘要:农产品副产品和微藻是具有神经保护特性的低成本、高价值的生物活性化合物来源。然而,治疗分子的神经保护效果可能受到其穿过血脑屏障 (BBB) 到达大脑的能力的限制。在本研究中,对已证明具有体外神经保护潜力的刺槐 (ASFE)、Cyphomandra betacea (T33)、小粒咖啡 (PPC1)、油橄榄 (OL-SS)、柑橘 (PLE100) 副产品和微藻 Dunaliella salina (DS) 的各种绿色提取物进行了基于永生化人脑微血管内皮细胞 (HBMEC) 模型的体外 BBB 通透性和运输测定。进行了毒性和 BBB 完整性测试,并在孵育 2 和 4 小时后使用气相色谱和液相色谱结合四极杆飞行时间质谱 (GC/LC-Q-TOF-MS) 评估了目标生物活性分子穿过 BBB 的运输情况。HBMEC-BBB 运输试验显示,代表性神经保护化合物(如单萜和倍半萜、植物甾醇和一些酚类化合物)具有高渗透性。从拟议的体外 BBB 细胞模型中获得的结果进一步证明了目标天然提取物的神经保护潜力,这些提取物是功能性成分的有希望的来源,可以转化为具有科学支持的神经保护声明的食品补充剂、食品添加剂或营养保健品。
转介反应是高效的动态共价反应,可以通过将材料暴露于外部刺激(例如热量),从而在无需催化剂的情况下进行交换而无需催化剂。在这项工作中,合成了由香草蛋白丙烯酸酯和香草蛋白甲基丙烯酸酯官能化的Jeffamines®组成的五个生物基衍生的树脂制剂,并合成了使用数字光投影(DLP)打印的3D。产生的最终的热固体显示了一系列机械性能(Young的模量2.05 - 332 MPa),这些特性允许一系列应用。我们获得的材料具有自我修复能力,这些能力是通过刮擦愈合测试来表征的。此外,当使用热压下在高压下,在高压下的玻璃过渡温度上方进行热处理时,动态转移反应可以重新处理。由于简单的合成程序和随时可用的商业Jeffamines®,这些材料将有助于促进向具有主要生物含量的材料的转变,并有助于脱离由不可再生资源制成的聚合物。
对DRE的投资需要集中注意力和资源,尽管能源过渡投资一直在稳步上升,但需要更大的加速。最近的估计表明,需要平均年度投资到当前水平的两倍或三倍。4估计表明,每年需要全球投资的2.5亿美元才能实现联合国的可持续发展目标(UNSDGS)。5尽管达成共识;但是,DRE的投资和交付的投资未达到所需的速度,这使许多城市努力达到脱碳目标,并因错过的清洁,可持续的当地能源解决方案而削弱了脱碳目标。
新闻稿 新加坡,2022 年 4 月 5 日 新加坡南洋理工大学科学家开发出一种可回收的花粉纸,可重复打印和“取消打印” 新加坡南洋理工大学 (NTU Singapore) 的科学家开发出了一种以花粉为基础的“纸”,在打印后可以“擦除”并重复使用多次,而不会损坏纸张。 在 4 月 5 日《先进材料》杂志在线发表的一篇研究论文中,新加坡南洋理工大学的科学家演示了如何使用激光打印机在非过敏性花粉纸上打印高分辨率彩色图像,然后使用碱性溶液“取消打印”——即在不损坏纸张的情况下完全去除碳粉(见下方编者注中的图片 1)。 他们证明这个过程可以重复至少八次。 这种创新的、可立即打印的花粉纸可以成为传统纸张的环保替代品,传统纸张经过多步骤工艺制成,对环境有显著的负面影响,由 Subra Suresh 和 Cho Nam-Joon 教授领导的 NTU 团队表示。它还可以帮助减少与传统纸张回收相关的碳排放和能源使用,这涉及再制浆、脱色(去除打印机墨粉)和重建。 这个全 NTU 研究团队的其他成员包括研究员 Ze Zhao 博士、研究生 Jingyu Deng 和 Hyunhyuk Tae 以及前研究生 Mohammed Shahrudin Ibrahim。 NTU 校长兼该论文的资深作者 Subra Suresh 教授说:“通过这项研究,我们展示了我们可以在由天然植物材料制成的纸张上打印高分辨率彩色图像,这种材料通过我们最近开发的一种工艺变得不致敏。 我们进一步证明了在不破坏纸张的情况下反复这样做的可行性,使这种材料成为传统木质纸张的可行环保替代品。 这是一种纸张回收的新方法——不仅以更可持续的方式造纸,而且还通过
摘要 酯酶已成为酶法聚酯回收的重要生物催化剂,将聚对苯二甲酸乙二醇酯 (PET) 回收为对苯二甲酸 (TPA) 和乙二醇 (EG)。本文介绍了基于酶法 PET 解聚的回收工艺的流程建模、技术经济、生命周期和社会经济影响分析,并与原始 TPA 制造进行了比较。我们预测酶法回收 TPA (rTPA) 具有成本竞争力,并强调了实现这一目标的关键领域。除了有利的长期社会经济效益外,rTPA 还可以将每千克 TPA 的总供应链能耗降低 69%–83%,温室气体排放量降低 17%–43%。一项针对美国经济的评估估计,TPA 回收工艺可减少高达 95% 的环境影响,同时产生高达 45% 的社会经济效益,这相对于原始 TPA 生产而言也是如此。敏感性分析突出了实现生物 PET 回收和升级再造的重大研究机会。
