对于大多数生物体,DNA采用了负超螺旋的状态[( - )SC],该状态已知促进DNA螺旋的疾病,从而促进与关键细胞过程有关的分子机械获得遗传信息的获取(1)。相比之下,在DNA复制和转录机械之前生成正涂层[(+)SC](2)。在没有放松(+)SC的拓扑异构酶的情况下,这些基本过程受到阻碍(3)。IIA型DNA拓扑异构酶(topoiia)是进化保守的大分子,通过通过短暂的双链断裂,使DNA弛豫,衰减和脱节来调节DNA拓扑,从而调节DNA拓扑。拓扑素酶是用于传染病和癌症治疗的治疗剂的主要靶标(5,6)。
本质上,芳香族寡酰胺的行为就像分子变色龙一样,它们可以符合蛋白质和DNA中存在的α-螺旋,并介入蛋白质蛋白质和蛋白质核酸复合物。自然也以膀胱二胺和阿昔霉素的形式出现在这种类型的特权结构[15]中,但也可以在此处列出Netropsin。cystobactamids首先由Müller和同事[16]描述,他们将它们与囊肿属的粘菌病分离出来。CBV34。后来,它们也被发现在囊肿,粘膜球菌和冠状球菌的菌株中。囊肿 - 二酰胺4 - 8 [17]可以分为两个子类,这些子类携带同甲氧蛋白酶或β-甲氧基 - 帕拉金部分连接到寡酰亚胺的子类(图3)。在已知的自然存在的膀胱胺中,861-2(8)是最活跃的成员,它抑制了几种临床相关的革兰氏阳性和革兰氏阴性菌株(baumannii:mic =0.5μg/ ml,cintrobacter freundii:mic = 0.06μg/ ml,mic =0.5μg/ ml WT-III marR Δ 74bp: MIC = 0.5 μ g/mL, carbapenem-resistant P. aeruginosa CRE: MIC = 1.0 μ g/mL, and Proteus vulgaris : MIC = 0.25 μ g/mL) [17] whereby the activity of bacterial type IIa topoisomerases is inhibited.已经报道了膀胱菌的几种总合成[17,18]以及衍生物的文库,作为药物化学计划的一部分。[19]
抽象的大肠杆菌DNA速酶催化封闭的双链DNA的否定性超涂层,以ATP为代价。酶的酶的另外活性阐明了超涂层反应的能量偶联成分是ATP至ADP和ADP和PI的DNA依赖性水解,以及ATP通过gyrase裂解反应的DNA位点特异性的ATP改变。这两种DNA链的这种裂解是由稳定的Gy- Rase-DNA复合物的十二烷基硫酸钠处理的,该配合物被抑制剂氧甲酸捕获。ATP或不可水解的类似物,腺基-5'-二氨基磷酸酯(APP [NHLP),都会在Colel DNA上移动主要的裂解位点。这种切割重排的Novobiocin和Coumermycin al的预防将抗生素的作用位点放置在ATP水解之前的一个反应步骤中。步骤阻塞是ATP的结合,因为香豆素和Novobiocin在ATPase和SuperCoiling分析中与ATP竞争相互作用。 K;对于ATP而言,值比KM少四个数量级以上。这种简单的机制解释了药物对DNA回旋酶的所有影响。使用APP [NHP [NHP的另一种有效的反应竞争抑制剂催化YGYRASE的竞争抑制剂,表明将DNA驱动到更高的能量超胶结形式不需要高能键的裂解。 与Gyrase,App的底物水平(NHLP诱导与酶量成正比的超串联; a -0.3超螺旋转弯是根据Gyrase Frotomer A引入的。 我们假设ATP和APP [NH] P是回旋酶的构象变化的变构效应器,导致一轮超涂层。使用APP [NHP [NHP的另一种有效的反应竞争抑制剂催化YGYRASE的竞争抑制剂,表明将DNA驱动到更高的能量超胶结形式不需要高能键的裂解。与Gyrase,App的底物水平(NHLP诱导与酶量成正比的超串联; a -0.3超螺旋转弯是根据Gyrase Frotomer A引入的。我们假设ATP和APP [NH] P是回旋酶的构象变化的变构效应器,导致一轮超涂层。通过ATP水解的核苷酸解离,将回旋酶返回其原始构型,从而允许酶转移。伴随核苷酸亲和力改变的这种环状构象变化似乎也是其他多种操作中能量转导的共同特征,包括肌肉收缩,蛋白质合成和氧化磷酸化。