用于控制微带线馈电设计的参数主要包括带状线长度和宽度变化以及贴片的长度和宽度。馈线控制天线的回波损耗。为了提高效率,回波损耗应该较小。端口尺寸控制总带宽。为了增加带宽,端口也应该与馈线匹配。工作频带由天线的高度控制,最后贴片控制中心频率。该技术提供 0.1GHz 带宽,从 -15dB 开始考虑。该设计的回波损耗图如图 7 所示。匹配主要通过控制贴片的尺寸来实现。回波损耗图给出中心频率 12.7 GHz 处的 - 21.2dB。
摘要 采用 70 nm GaAs mHEMT OMMIC 工艺 (D007IH) 设计了四级 K 波段 MMIC 低噪声放大器 (LNA)。基于 Momentum EM 模拟结果,四级 LNA 实现了 29.5 dB ±1 dB 的增益、低至 1 dB 的噪声系数 (NF) 和整个波段优于 -10 dB 的输入回波损耗。LNA 芯片尺寸为 2500 µm x1750 µm。由于选择源阻抗以最小化实现输入匹配网络所需的元件数量,因此设计工作流程可以改善 LNA 的 NF 和输入回波损耗。所提出的电路的输入匹配网络由与有源器件的栅极串联的单个锥形八角形电感器组成,从而对第一级实现的 NF 影响很小,并显著改善 LNA 的输入回波损耗。
图 7 - 单个元件的模拟增益与近似增益比较 .............................................................................. 16 图 8:3x3 阵列中的单个元件 .............................................................................................. 16 图 9:3x3 阵列中元件的增益模式,其余元件开路 ............................................................. 17 图 10:3x3 阵列中元件的增益,其余元件端接至 50Ω ............................................................. 18 图 11:5x5 阵列中的单个元件 ............................................................................................. 19 图 12:5x5 阵列中元件的增益模式,其余元件开路 20 图 13:5x5 阵列中元件的增益,其余元件端接至 50Ω ............................................................. 21 图 14:发送和接收元件模拟 ............................................................................................. 22 图 15:单个 Tx 和 Rx 元件的返回和插入损耗模拟 ............................................................................. 22 图16:全阵列几何结构 ................................................................................................ 23 图 17:Tx 和 Rx 元件的 S 参数,其他元件开路 ........................................ 24 图 18:Tx 和 Rx 元件的 S 参数,其他元件端接至 50Ω ........................................ 25 图 19:MatLab 程序的嵌套 FOR 循环片段 ............................................................. 27 图 20:回波损耗,中心频率 8.14 GHz ............................................................................. 33 图 21:Z-Smith 图,Z 1 =(50.42-0.08j)Ω ............................................................................. 33 图 22:回波损耗,中心频率 8.16 GHz ............................................................................. 34 图 23:Z-Smith 图,Z 1 =(51.67-3.92j)Ω ............................................................................. 34 图 24:回波损耗损耗,中心频率 8.15 GHz .............................................................................. 35 图 25:所有 S 参数 .......................................................................................................... 35 图 26:Z-Smith 图,Z 1 =(50.46-0.14j)Ω ...................................................................... 36 图 27:回波损耗,中心频率 8.16 GHz ............................................................................. 37 图 28:Z-Smith 图,Z 1 =(51.51-4.11j)Ω ............................................................................. 37 图 29:回波损耗,中心频率 8.15 GHz ............................................................................. 38 图 30:所有 S 参数 ............................................................................................................. 38 图 31:Z-Smith 图,Z 1 =(50.30+0.18j)Ω ............................................................................. 40
摘要 本文介绍了一种 H 形微带贴片天线的设计,用于评估甲状腺癌细胞检测的 SAR(特定吸收率)。该天线灵活,适用于可穿戴应用。当天线放置在人体甲状腺上时,性能可能会发生变化。测量了回波损耗、增益、VSWR 等参数。天线有不同的种类,但微带贴片天线具有成本低、体积小、重量轻等特点。FR-4(有损)用作基板以克服低增益和高回波损耗。贴片导体由铜材料制成,形成柔性天线。所提出的天线设计为 1g 带肿瘤组织提供了 0.0199W/Kg 的高 SAR 值。由于癌细胞含有更多的水分,因此可以在所提出的天线设计中改变各种参数的性能。所提出的天线的增益值为 16.452GHz 时的 6.36 dB。所提出的 H 形和 H 形垂直缝天线的甲状腺模型是使用 CST(计算机仿真技术)微波工作室工具设计的。关键词:电压驻波比、回波损耗、增益、特定吸收率
1. 简介 低噪声放大器 (LNA) 是无线通信中常用的 RF 接收器的主要模块和第一级。它常用于放大接收天线接收到的弱信号。LNA 的内部噪声极小,因此对系统噪声的影响并不大 [1]-[2]。由于 LNA 是 RF 前端接收器的主要部分,因此在设计 LNA 时应考虑低噪声系数 (NF) 和高增益等规格,以保持整体接收器 NF 较低。LNA 在通信领域有许多应用,例如无线通信、天文学应用、雷达和卫星通信、电信等。增益、噪声系数、输入回波损耗和输出回波损耗是 LNA 的基本规格。为了表示这些规格,使用放大器的 S 参数。除了这些特性之外,设计 LNA 时还需要考虑的其他一些特性包括线性度、稳定性、带宽和功率耗散。
本文介绍了用于无线传感器网络 (WSN) 应用的超低功耗低噪声放大器 (LNA) 的设计拓扑。所提出的超低功耗 2.4 GHz CMOS LNA 设计采用 0.13 µm Silterra 技术实现。LNA 的低功耗得益于第一级和第二级的正向体偏置技术。为了提高增益,同时降低整个电路的功耗,实施了两级。仿真结果表明,在 0.55 V 的低电源电压下,总功耗仅为 0.45 mW。与之前的工作相比,功耗降低了约 36%。实现了 15.1 dB 的增益、5.9 dB 的噪声系数 (NF) 和 -2 dBm 的输入三阶截点 (IIP3)。输入回波损耗 (S11) 和输出回波损耗 (S22) 分别为 -17.6 dB 和 -12.3 dB。同时,计算出的品质因数(FOM)为7.19 mW -1 。
摘要 :低噪声放大器 (LNA) 是接收器最重要的前端模块。LNA 的噪声系数 (NF) 和散射参数影响整个接收器电路的整体性能。如今,在 5G 技术时代,传输数据的质量得到了提高。因此,需要更高的带宽来以更高的速度传输数据。在这种情况下,通信模块需要更新。这项研究是为了推动 LNA 的发展。LNA 设计的主要目标是降低噪声系数和回波损耗。本文旨在设计一个带宽为 400 MHz 的 2.4 GHz LNA。该电路是借助单短截线微带线设计的。我们试图将微带线的长度保持在尽可能短的范围内。这项工作中使用了晶体管 ATF-21170 砷化镓场效应晶体管 (GaAs FET)。该电路在 Keysight Advance Design System (ADS) 中进行了仿真。该放大器采用标准方法手工设计。LNA 在 2.2 GHz 至 2.6 GHz 的频率范围内无条件稳定。为了构建放大器的阻抗匹配电路,使用了史密斯图。观察到 LNA 增益 (S21) 大于 15.3 dB,NF 小于 1.2 dB,输入回波损耗 (S11) 小于 -13.3 dB,输出回波损耗 (S22) 小于 -17.1 dB,带宽为 400 MHz,范围从 2.2 到 2.6 GHz。据作者所知,这在文献中从未出现过。
参数 最小值典型值最大值 单位 工作频率 27 31 GHz 28V 小信号 小信号线性增益 18.5 20 dB 输入回波损耗 -35 -20 dB 输出回波损耗 -26 -16 dB 28V 晶圆上脉冲功率 Psat(27 dBm 时) 42 dBm 功率增益(27 dBm 时) 19.1 19.6 20.1 dB P1db 41.20 42 42.5 dBm PAE(27 dBm 时) 30.5 32.5 34 % 最大 PAE 31 32.9 33.8 % 24V、25⁰C 固定 CW 外壳温度 Psat(28 dBm 时) 38.1 39 39.6 dBm 功率增益(28 dBm 时) 15.3 16.9 17.8 dB PAE(28 dBm 时) 19.1 22 24.7 % 最大 PAE 24 28.4 % 漏极电压 28 V 第 1 阶段栅极电压 -3.925 V 第 2 阶段栅极电压 -3.925 V 第 1 阶段 Idq 240 mA 第 2 阶段 Idq 960 mA
第 2 章。光纤。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 2.1 光的本质。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 2.1.1 作为电磁波的光。。。。。。。。。。。。。。。。。。。。16 2.1.2 极化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 2.1.3 干扰。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 2.2 在光纤上传输光。。。。。。。。。。。。。。。。。。。。。。。。。.25 2.2.1 玻璃特性 .......................29 2.2.2 传输容量 .........................33 2.2.3 操作原理 ...........................33 2.2.4 光纤折射率分布 ........................36 2.3 光在多模光纤中的传播 .........。。。。。。。。。。。。39 2.3.1 斯涅尔定律。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。40 2.3.2 临界角 ............。。。。。。。。。。。。。。。。。。。。41 2.3.3 数值孔径 (NA)。。。。。。。。。。。。。。。。。。。。。。。。。。42 2.3.4 传播模式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。44 2.3.5 模式耦合。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。50 2.3.6 模态噪声。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。51 2.3.7 命名模式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。55 2.4 单模传播。。。。。。。。。。。。。。。。。。。。。。。。。。。。56 2.4.1 单模特性 ...... div>............。 。 。 。 。 。 。 . 57 2.4.2 单模光纤中的色散 . . . . . . . . . . div> . . . . . . . . . . . 。 59 2.4.3 模式划分噪声。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . . . . . . div> 67 2.4.4 反射和回波损耗变化 . . . . . .。。。。。。。.57 2.4.2 单模光纤中的色散 .......... div>...........。59 2.4.3 模式划分噪声。。。。。。。。。。。。。。。。。。。。。。...... div>67 2.4.4 反射和回波损耗变化 ............< div> 。。。。。。..67 2.4.5 非线性高功率效应 ..。。。。。。。。 < /div>.............69 2.5 塑料光纤 (POF) ... div>............。 。 。 。 。 。 。 。 。 。 。 。 。 74 2.5.1 POF 研究。 。 。 。 。 。。。。。。。。。。。。。。74 2.5.1 POF 研究。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.76 2.6 硬质聚合物(塑料)包层(二氧化硅)光纤 (HPCF) .........< div> 。。。。。。76