摘要 近年来,射频能量收集已成为一个有趣的研究领域。本文介绍了多频带整流电路的实施布局。我们在这里实现了 1.9 GHz 的整流电路。整流电路的设计和仿真采用 -10 dBm、0 dBm、10 dBm 的输入功率。在谐振频率 1.83GHz、4.37 GHz 和 5.53 GHz 频率下,输入功率相对于直流电压的变化如图所示。当负载为 10kOhm、1Kohm、5Kohm,谐振频率为 1.83GHz、4.37GHz 和 5.53GHz 时,效率 (%) 相对于输入功率 (dBm) 的变化如图所示。当输入功率为 -10dBm 和 10dBm,频率为 1.83GHz、4.37GHz 和 5.53GHz 时,直流输出电压相对于负载的变化如图所示。本文展示了输入功率为-10dBm、0dBm、谐振频率为1.83GHz、4.37GHz和5.53GHz时效率随负载的变化。本文解释了输入功率为-10dBm和0dBm、负载为1kOhm、5Kohm和10Kohm时输出直流电压随频率的变化。本文还介绍了输入功率=-10 dBm和0dBm、负载=10Kohm时输入阻抗(Zin)实部和虚部随频率(GHz)的变化。本文还展示了输入功率为-10dBm、负载为10KOhm时回波损耗S(1,1)(dB)随频率的变化。关键词:整流器、回波损耗、射频能量收集
摘要:癌症是全球最常见的死亡原因之一。脑肿瘤是一种严重且危险的肿瘤,其检测技术存在一些困难;早期肿瘤较小时很难确定其位置。本研究的目的是设计一种适合检测脑癌肿瘤的低成本微带贴片天线传感器。使用计算机仿真技术 CST Studio Suite 3D EM 仿真和分析设计了具有不同频率 2.8 GHz、3.9 GHz、5GHz 和 5.6GHz 的贴片天线,用于诊断脑肿瘤。已使用六层脑模型(脂肪、硬脑膜、脑、皮肤、脑脊液 (CSF) 和头骨)对这些共振频率(低频带 (L-B) 2 GHz、中频带 (M- B) 3.9-5 GHz 和高频带 (U-B) > 5 GHz)进行了比较研究。在脑模型上有肿瘤细胞和没有肿瘤细胞的两种情况下评估了设计的贴片传感器。已观察到三个参数,即频率相移、深度反射回波损耗和功率吸收,用于指示肿瘤细胞的存在。这项研究的结论是,中频带 (M-B) 具有良好的穿透力和更好的回波损耗深度(约 - 20dB)。同时,较高频段提供 21 MHz 相移的高分辨率,但差异回波损耗的深度值仅为 -0.1dB。所提出的工作可以为生物医学应用的贴片传感器的设计提供途径。
无线设备,尤其是移动通信如今非常流行且使用广泛。天线是其中非常重要的部分,它允许无线设备之间无需使用电缆进行数据传输。研究人员一直在尝试改进天线的一些技术特性,例如天线增益、带宽和辐射方向图。本研究设计了一种具有高增益和宽带辐射特性的悬浮贴片寄生天线。在设计的天线中,接地平面和辐射部分之间使用空气代替介电材料。通过在天线的馈电点和辐射部分之间设计阻抗匹配部分来获得高增益和宽带。在本研究中,设计的天线的工作带宽约为 1750-2550 MHz。然而,天线部分的尺寸可以根据波长改变以在 3.6 GHz 和 6 GHz 下工作。矩形阻抗匹配部分的两侧有导电梯形寄生元件。梯形部分和辐射元件之间的薄空气间隙有助于阻抗匹配。使用常用的商业 EM 仿真软件包 HFSS 设计、分析和仿真天线。介绍了天线的详细配置、模拟回波损耗、辐射方向图和增益图。还实现了具有 2GHz 中心频率的天线,并测量了回波损耗 (S11)。引用本文:I. Catalkaya,“用于无线应用的带寄生元件的宽带高增益天线”,《航空航天技术杂志》,第 13 卷,第 1 期,第 121-128 页,2020 年 1 月。Kablosuz Uygulamalar İçin Parazitik Elemanlı Geniş Bantlı Yüksek Kazançlı Bir Anten
本文介绍了一种使用 Minkowski-Sierpinski 分形技术和基片集成波导 (SIW) 在 60 GHz 谐振的新型贴片天线设计。该天线拟用于无线体域网应用 (WBAN)。所提出的天线采用 Rogers 5880 基片实现,其介电常数 (ε r ) 为 2.2,损耗角正切为 0.0004,基片高度为 0.381 mm。计算机仿真技术 - 微波工作室 (CST-MW) 用于仿真所提出的天线。仿真结果显示,在 (58.3-61.7) GHz 范围内具有 3.5 GHz 的宽带宽,回波损耗大于 -10 dB。模拟增益为 7.9 dB,线性天线效率为 91%。所提出的天线用于改善 WBAN 应用的毫米波 (mm-Wave) 频段的辐射方向图、带宽和增益的质量。
由于无线设备的各种应用,无线通信的带宽不断增加。射频功率放大器 (RFPA) 是收发器的关键组件之一。因此,为了满足带宽要求,需要宽带 RFPA。RFPA 不仅需要宽带匹配网络,而且更重要的是偏置网络。对于下一代通信系统,需要宽带偏置网络在宽 GHz 带宽范围内运行。本文使用四分之一波长传输线和蝶形短截线设计了功率放大器的宽带偏置网络,适用于 3.3 GHz 至 4.3 GHz 的频带。Roger 的 RO3006 用作偏置网络设计的基板。设计的网络在所需的频率范围内表现良好。偏置网络的性能显示回波损耗为 9 dB 至 19 dB,射频 (RF) 隔离度超过 35 dB,插入损耗为 0 dB 至 1.5 dB。该宽带偏置网络可用于下一代通信系统。
材料:铌酸锂/硅 波长范围:900 至 1700 nm 输出:保偏 光输入电平:+18 dBm 最大调制器偏置模式:Q+ 线性操作 消光比:25 dB 操作频率范围:DC 至 20GHz S21 带宽:3 dB,17 GHz 典型 IIP3 @ 10 GHz:25 dBm 典型输入 RF 电压:25 dBm 最大 RF 回波损耗:> 10 dB@ 20 GHz 工作电压(Vπ):< 3.5 V 光纤类型:PANDA 输入和输出 RF 连接器:SMA 电连接器:6/9 针用于控制和供电。尺寸:不超过 150 毫米 x 30 毫米 x 25 毫米。工作温度:-55°C 至 +75°C 对原型/开发技术的未来期望
摘要 — 在 SiC 晶片上设计、制造和测量了不同几何形状的基片集成波导 (SIW),以及基于 SIW 的谐振器、基于 SIW 的滤波器、接地共面波导 (GCPW)、GCPW-SIW 过渡和校准结构。使用两层校准从 GCPW 探测的散射参数中提取固有 SIW 特性。由此产生的 D 波段 (110-170 GHz) SIW 表现出创纪录的低插入损耗 0.22 ± 0.04 dB/mm,比 GCPW 好四倍。3 极滤波器在 135 GHz 时表现出 1.0 dB 的插入损耗和 25 dB 的回波损耗,这代表了 SiC SIW 滤波器的最新水平,并且比 Si 片上滤波器好几个数量级。这些结果显示了 SIW 有望在同一 SiC 芯片上集成 HEMT、滤波器、天线和其他电路元件。关键词 — 腔体谐振器、微波滤波器、毫米波集成电路、半导体波导
摘要 — 本文介绍了一种创新的直通负载元件,旨在用于毫米波频率下的特性分析应用。根据直流控制电压,所提出的结构可以用作直通连接或 50 Ω 负载。除其他潜在应用外,该系统还可用于实现转换开关或衰减器。演示器采用 STM 55 纳米 BiCMOS 技术制造和测量。在 55 GHz 至 170 GHz 的宽带宽上,实验测量表明,当用作直通连接时,插入损耗最大为 1.6 dB,当用作 50 Ω 负载时,插入损耗最小为 14 dB。在这两种情况下,回波损耗都优于 10 dB。90 GHz 的插入损耗对于直通连接为 0.6 dB,对于 50 Ω 负载连接为 20 dB。