该系在唐宁区拥有两栋建筑,包括教学设施、配备用于各种研究项目的研究实验室以及剑桥高级成像中心等设施。它参与了一系列大学跨学科研究计划,包括剑桥神经科学、剑桥生殖、剑桥心血管疾病、新陈代谢、干细胞。该系成员为生物科学学院的多个研究主题做出了贡献,包括在神经科学和生殖、发育和终身健康方面担任领导角色(https://www.bio.cam.ac.uk/research/research-themes)。PDN 还在剑桥干细胞研究所和格登研究所设有附属机构,并且靠近其他主要生物部门,包括心理学、遗传学、生物化学和病理学。PDN 与临床学院、兽医学院、MRC 脑修复中心和 MRC 分子生物学实验室有着密切的合作关系。
液压蓄能器是流体等效的电容器(Yudell 和 Van de Ven,2017 年;Leon-Quiroga 等人,2020 年)。因此,它们被用来储存能量。它们的应用包括混合动力汽车(Costa 和 Sepehri,2015 年;美国环境保护署,2020 年;Pourmovahed 等人,1992 年;Deppen 等人,2012 年;Deppen 等人,2015 年;Beachley 等人,1983 年;Ho 和 Ahn,2010 年;Chapp,2004 年;Chen 等人,2022 年;Sprengel 和 Ivantysynova,2013 年)、风能和波浪能提取(Dutta 等人,2014 年;Fan 等人,2016a 年;Fan 等人,2016b 年;Fan 等人,2016c 年;Irizar 和 Andreasen,2017 年;Fan 和 Mu,2020 年)、挖掘机和类似机械(Heybroek 等人等,2012;林和王,2012;沉等,2013; Hippalgaonkar 和 Ivantysynova,2016a; Hippalgaonkar 和 Ivantysynova,2016b;任等人,2018;于和安,2020; Bertolin 和 Vacca,2021)。蓄能器还被用作闭式液压回路中的低压罐(Çal ış kan et al., 2015; Costa and Sepehri, 2019)、减震器(Porumamilla et al., 2008)以及作为切换液压回路的一部分,其中执行器的液压动力由快速切换液压阀而不是滑阀控制(以减少节流损失)(Brown et al., 1988; De Negri et al., 2014; Kogler and Scheidl, 2016; Yudell and Van de Ven, 2017)。根据其结构类型,蓄能器分为气体加载型、重量加载型和弹簧加载型(Costa and Sepehri, 2015)。气体加载(液压气动)蓄能器是液压回路中最常用的蓄能器,迄今为止引用的所有参考资料都证明了这一点,也是本文的重点。然而,在继续之前,有必要谈谈重量和弹簧加载蓄能器。重量加载蓄能器在排放过程中提供(几乎)恒定的压力,因为它们将潜在的重力能量存储在垂直移动的质量中,如图 1 所示。
7KHWD VFDOH FRRUGLQDWLRQ RI SUHOLPELF PHGLDO SUHIURQWDO FRUWH[ P3)& ORFDO ILHOG ϲϰ SRWHQWLDOV /)3V DQG LWV LQIOXHQFH YLD GLUHFW RU LQGLUHFW SURMHFWLRQV WR WKH YHQWUDO ϲϱ KLSSRFDPSXV Y+& DQG GRUVDO KLSSRFDPSXV G+& GXULQJ VSDWLDO OHDUQLQJ UHPDLQV ϲϲ SRRUO\ XQGHUVWRRG :HK\SRWKHVL]HG WKDW WKHWD IUHTXHQF\ FRRUGLQDWLRQ G\QDPLFV ZLWKLQ ϲϳ DQG EHWZHHQ WKH P3)& G+& DQG Y+& ZRXOG EH SUHGHWHUPLQHG E\ WKH OHYHO RI ϲϴ FRQQHFWLYLW\ UDWKHU WKDQ UHIOHFWLQJ GLIIHULQJ FLUFXLW WKURXJKSXW UHODWLRQVKLSV GHSHQGLQJ RQ ϲϵ FRJQLWLYH GHPDQGV 0RUHRYHU ZH K\SRWKHVL]HG WKDW FRKHUHQFH OHYHOV ZRXOG QRW FKDQJH ϳϬ GXULQJ OHDUQLQJ RI D FRPSOH[ VSDWLDO DYRLGDQFH WDVN $GXOW PDOH UDWV ZHUH ELODWHUDOO\ ϳϭ LPSODQWHG ZLWK ((* HOHFWURGHV DQG /)3V UHFRUGHG LQ HDFK VWUXFWXUH &RQWUDU\ WR ϳϮ SUHGLFWLRQV WKHWD FRKHUHQFH DYHUDJHG DFURVV µ(DUO\¶ RU µ/DWH¶ WUDLQLQJ VHVVLRQV LQ WKH ϳϯ P3)& +& P3)& P3)& DQG +& +& LQFUHDVHG DV D IXQFWLRQ RI WDVN OHDUQLQJ ϳϰ &RKHUHQFH OHYHOV ZHUH DOVR KLJKHVW EHWZHHQ WKH LQGLUHFWO\ FRQQHFWHG P3)& G+& ϳϱ FLUFXLW SDUWLFXODUO\ GXULQJ HDUO\ WUDLQLQJ $OWKRXJK P3)& SRVW DFTXLVLWLRQ FRKHUHQFH ϳϲ UHPDLQHG KLJKHU ZLWK G+& WKDQ Y+& G\QDPLF P3)& FRKHUHQFH SDWWHUQV ZLWK ERWK ϳϳ KLSSRFDPSDO SROHV DFURVV DYRLGDQFH HSRFKV ZHUH VLPLODU ,Q WKH VHF SULRU WR ϳϴ DYRLGDQFH D UHJLRQDO WHPSRUDO VHTXHQFH RI WUDQVLWRU\ FRKHUHQFH SHDNV HPHUJHG ϳϵ EHWZHHQ WKH P3)& P3)& WKH P3)& +& DQG WKHQ G+& G+& 'XULQJ WKLV VHTXHQFH ϴϬ FRKHUHQFH ZLWKLQ WKHWD EDQGZLGWK IOXFWXDWHG EHWZHHQ HSRFKV DW GLVWLQFW VXE ϴϭ IUHTXHQFLHV VXJJHVWLQJ IUHTXHQF\ VSHFLILF UROHV IRU WKH SURSDJDWLRQ RI WDVN UHOHYDQW ϴϮ SURFHVVLQJ 2Q D VHF WLPHVFDOH FRKHUHQFH IUHTXHQF\ ZLWKLQ DQG EHWZHHQ WKH P3)& ϴϯ DQG KLSSRFDPSDO VHSWRWHPSRUDO D[LV FKDQJH DV D IXQFWLRQ RI DYRLGDQFH OHDUQLQJ DQG ϴϰ FRJQLWLYH GHPDQG 7KH UHVXOWV VXSSRUW D UROH IRU WKHWD FRKHUHQFH VXE EDQGZLGWKV DQG ϴϱ VSHFLILFDOO\ DQ +] P3)& WKHWD VLJQDO IRU JHQHUDWLQJ DQG SURFHVVLQJ TXDOLWDWLYHO\ ϴϲ GLIIHUHQW W\SHV RI LQIRUPDWLRQ LQ WKH RUJDQL]DWLRQ RI VSDWLDO DYRLGDQFH EHKDYLRU LQ WKH 细细 P3)& +& FLUFXLW 细细
随着星载传感器的小型化,预计小型卫星将使用更强大的有效载荷。因此,需要新的热概念来应对日益增加的热耗散和负面影响。本文提出了一种新的热控制概念,以对具有功率耗散问题的小型卫星进行热标准化,使其在热方面不受轨道的影响。这种新的热设计概念是微型机械泵回路 (MPL)。微型 MPL 的设计考虑了立方体卫星及其子系统的要求,从而确保其与小型卫星和各种任务的兼容性。该系统的核心是荷兰航空航天中心 (NLR) 开发的多并联微型泵 (MPMP)。这种泵概念提供了一种低质量、高可靠性的 MPL 解决方案。随后,本文描述了回路和泵的概念,并给出了微型泵的测试结果。Mini-MPL 也在 Matlab 中建模,以支持 MPL 系统设计权衡。本文描述了该模型,并展示了建模结果,并将其纳入了详细的工作流体选择中。最后,通过与传统热设计方案的比较,阐明了该系统的优点和缺点。本文最后展望了进一步的发展和 mini-MPL 应用。
特发性正常压力脑积水 (iNPH) 是一种常见的可逆性神经系统疾病,其特征是运动、认知和排尿控制受损,并伴有脑室扩大。脑脊液引流可以缓解症状,这使得 iNPH 成为可逆性痴呆的主要原因。由于对病理生理机制的了解有限、症状不具特异性以及合并症(即阿尔茨海默病)的患病率高,iNPH 在很大程度上未被充分诊断。出于这些原因,迫切需要开发用于 iNPH 诊断和预后的非侵入性定量生物标志物。与症状和治疗反应相关的脑回路结构和功能变化有望在这个方向上取得重大进展。我们回顾了 iNPH 中的结构和功能脑连接发现,并通过健康人群中的 iNPH 症状荟萃分析补充了这些发现。我们的目标是加强对 iNPH 大脑网络机制的概念化,并促进未来研究和治疗方案的新假设的发展。
目前许多基因工程治疗方法的一个显著限制是它们对治疗效果的强度、时间或细胞环境的控制有限。合成基因/基因电路是一种合成生物学方法,可以控制特定 DNA、RNA 或蛋白质的生成、转化或消耗,并提供对基因表达和细胞行为的精确控制。它们可以通过仔细选择启动子、阻遏物和其他遗传成分来设计执行逻辑操作。在 Espacenet 中进行了专利搜索,结果选出 38 项专利,其中有 15 个最常见的国际分类。专利实施方案被分类为治疗分子的递送、传染病的治疗、癌症的治疗、出血的治疗和代谢紊乱的治疗。所选基因电路的逻辑门被描述以全面展示它们的治疗应用。合成基因电路可以定制以精确控制治疗干预,从而实现针对个体患者需求的个性化治疗,提高治疗效果并最大限度地减少副作用。它们可以是高度灵敏的生物传感器,通过精确监测各种生物标志物或病原体并适当合成治疗分子来提供实时治疗。合成基因电路还可能导致开发先进的再生疗法和可植入的生物装置,这些装置可按需产生生物活性分子。然而,这项技术面临着商业盈利能力的挑战。基因电路设计需要针对特定应用进行调整,并且可能存在多种调节剂毒性、同源重组、上下文依赖性、资源过度使用和环境多变性等缺点。
衡量协调神经动力学的特定方面如何转化为信息处理操作,以及最终转化为认知功能是一项挑战。一个障碍是简单的电路机制(例如自我维持或传播活动以及输入的非线性求和)不会直接产生高级功能。尽管如此,它们已经实现了神经活动携带的简单信息。在这里,我们提出,不同的功能(例如刺激表征、工作记忆或选择性注意)源于不同组合和类型的低级信息操作或信息处理原语。为了检验这一假设,我们将信息论方法与涉及相互作用的大脑区域的多尺度神经回路模拟相结合,这些区域模拟了明确的认知功能。具体而言,我们跟踪从神经动力学模式中出现的信息动态,使用定量指标来检测信息在何处和何时被主动缓冲、传输或非线性合并,作为低级处理(存储、传输和修改)的可能模式。我们发现,维持工作记忆中的表征或进行注意力增益调节的神经元子集分别通过其在信息存储或修改操作中的参与度增加来发出信号。因此,信息动态指标除了检测哪些网络单元参与认知处理外,还有望指定它们如何以及何时进行认知处理,即通过哪种类型的原始计算,这种能力可用于分析实验记录。
在系统神经科学的大部分历史中,科学家一直致力于将单个大脑区域中的神经元活动与行为联系起来。该研究项目在感觉神经科学中取得了成功,它被用于识别和分析感觉通路中的离散阶段,这些阶段施加特定的转换以产生更精细的感觉特征检测器。相同的概念方法已应用于认知领域(位置细胞、镜像细胞)和运动系统(运动方向编码)。然而,神经连接的一个显著特征是嵌套反馈回路,这表明本质上是多区域计算。某些运动信号似乎被传送到整个大脑区域。此外,关于运动的感觉后果的预测会从运动区域发送到感觉区域,在那里它们可以与感觉输入进行比较。随着神经科学家开始用大规模记录探索更复杂的行为,理解多区域神经回路正成为系统神经科学的主要目标。本系列文章回顾了分析多区域神经回路的进展,并强调了未来的概念和技术挑战。