在全球范围内,疟疾仍然是最普遍的寄生虫之一。世界卫生组织(WHO)2022年世界疟疾报告显示,全球估计有2.47亿例和96%的疟疾死亡发生在非洲(1)。引起该疾病的生物来自疟原虫属。当感染性雌性蚊子摄取血液餐时,这些寄生虫会传播到易感宿主。四种不同的疟原虫感染了人类,即恶性疟原虫,P。ovale,P。疟疾和Vivax。虽然Vivax是全球最广泛的质量物种,但恶性疟原虫是最普遍,最危险的,并且主要在非洲发现,占估计全球临床疟疾病例的99.7%(1)。卵子疟原虫进一步分为两个亚种; P.O。柯蒂西和P. Wallikeri(2)。除了典型的人类寄生虫外,最近还发现了许多猿猴寄生虫
摘要:RASSF1A 肿瘤抑制因子是一种参与细胞信号传导的再生蛋白。越来越多的证据表明,这种蛋白质位于复杂信号网络的交叉点,该网络包括细胞稳态的关键调节器,例如 Ras、MST2/Hippo、p53 和死亡受体通路。RASSF1A 表达的丧失是实体肿瘤中最常见的事件之一,通常是由 DNA 甲基化导致的基因沉默引起的。因此,重新表达 RASSF1A 或针对其复杂信号网络的影响模块进行治疗是治疗多种肿瘤类型的一种有希望的途径。在这里,我们回顾了 RASSF1A 信号网络的主要模块以及网络失调对不同癌症类型的影响的证据。具体来说,我们总结了介导 RASSF1A 启动子甲基化的表观遗传机制以及 Hippo 和 RAF1 信号模块。最后,我们讨论了重建 RASSF1A 功能的不同策略,以及如何通过多靶向途径方法选择此网络中的可用药节点来开发新的癌症治疗方法。
根结线虫(Meloidogyne spp。,rkn)是全球最具破坏性的内寄生虫线虫之一,通常导致作物生长和产量的降低。洞悉宿主-RKN相互作用的动力学,尤其是在不同的生物和非生物环境中,对于设计新型的RKN缓解措施可能是关键的。植物促进生长细菌(PGPB)涉及不同的植物生长增强活动,例如生物铜质化,病原体抑制和全身耐药性的诱导。我们总结了有关PGPB和非生物因素(例如土壤pH,质地,结构,水分等)作用的最新知识。在调节RKN-host相互作用中。rkn直接或间接地受到不同PGPB的影响,相互作用中的非生物因子相互作用以及对RKN感染的宿主反应。我们强调了(i)PGPB直接和间接影响RKN-宿主相互作用的三方(host-rkn-pgpb)现象; (ii)宿主对根际PGPB的选择和富集的影响; (iii)土壤微生物如何增强RKN寄生虫; (iv)宿主在RKN-PGPB相互作用中的影响,以及(v)非生物因子在调节三方相互作用中的作用。此外,我们讨论了不同的农业实践如何改变相互作用。最后,我们强调将三方互动知识纳入集成的RKN管理策略的重要性。
在两年的时间里,路易斯维尔大学医院出现了多重耐药性肺炎克雷伯菌引起的院内感染(M. Raff,未发表数据)。怀疑是 R 因子传播,因为在几种不同的肺炎克雷伯菌血清型中都发现了多重耐药特性(1、11、17)。在本研究中,我们表明,单一 R 因子是造成这种流行病的原因,并且在我们的医院环境中持续存在。脱氧核糖核酸 (DNA)-DNA 杂交用于在所有肺炎克雷伯菌菌株中识别这种 R 因子,并且可能被证明是持续研究这种和未来多重耐药微生物爆发的有用工具。(这项工作是 M.-A. Courtney 提交给路易斯维尔大学研究生院的论文的一部分,部分满足博士学位的要求。)
在全球范围内,乳腺癌是女性中最常见的癌症形式。乳腺癌的肿瘤微环境通常表现出缺氧。缺氧诱导因子 1-alpha 是一种转录因子,在乳腺癌中被发现过度表达和激活,通过介导一系列反应在缺氧微环境中发挥关键作用。缺氧诱导因子 1-alpha 参与调节下游通路和靶基因,这些通路和靶基因在缺氧条件下至关重要,包括糖酵解、血管生成和转移。这些过程通过管理与肿瘤侵袭、转移、免疫逃避和耐药性相关的癌症相关活动,显著促进乳腺癌进展,导致患者预后不良。因此,人们对缺氧诱导因子 1-alpha 作为癌症治疗的潜在靶点有着浓厚的兴趣。目前,针对缺氧诱导因子 1-alpha 的药物研究主要处于临床前阶段,这凸显了深入了解 HIF-1 a 及其调控途径的必要性。预计未来将有有效的 HIF-1 a 抑制剂进入临床试验,为乳腺癌患者带来新的希望。因此,本综述重点介绍 HIF-1 a 的结构和功能、其在乳腺癌进展中的作用以及对抗 HIF-1 a 依赖性耐药性的策略,强调其治疗潜力。
摘要 表皮生长因子 (EGF) 可诱导非肿瘤大鼠肾成纤维细胞在细胞培养中发生转化表型,这些转化表型是从成年小鼠的许多非肿瘤组织(包括颌下腺、肾脏、肝脏、肌肉、心脏和大脑)中分离出来的。它们与之前描述的从肿瘤细胞中分离出来的转化生长因子 (TGF) 类似,具体如下:它们可通过酸/乙醇提取,并且是酸稳定的低分子量 (6000-10,000) 多肽,需要二硫键才能起作用,并且它们会导致非肿瘤指示细胞的锚定非依赖性生长,而这些细胞在没有它们的情况下不会在软琼脂中生长。从雄性小鼠的颌下腺中对这些 TGF 进行部分纯化,结果表明它们不同于 EGF。与之前描述的细胞外 TGF 不同,但与来自肿瘤细胞的某些细胞 TGF 一样,它们通过 EGF 增强其促进锚定非依赖性生长的能力。颌下腺 TGF 蛋白的等电点接近中性。在 Bio-Gel P-30 上进行色谱分析,然后进行高压液相色谱分析,总纯化率达到 22,000 倍。在 EGF 存在下进行测定时,最纯化的蛋白质在 1 ng/ml 的软琼脂中具有诱导生长的活性。这些数据进一步证明了肿瘤形成可能是由非肿瘤生化过程的定量而非定性改变引起的。我们最近描述了 (1) 从几种肿瘤小鼠组织(包括由莫洛尼肉瘤病毒 (MSV) 转化的成纤维细胞和最初由化学致癌物诱导的可移植膀胱癌)中分离和表征一组低分子量、酸稳定性多肽(称为转化生长因子 (TGF))。这些多肽是可通过酸/乙醇提取的细胞内蛋白质。类似的细胞外转化多肽,称为肉瘤生长因子 (SGF),是由 De Larco 和 Todaro (2) 从培养的 MSV 转化小鼠成纤维细胞的条件培养基中首次分离出来的。最近报道了几种其他细胞外转化多肽,它们来源于人类 (3) 和动物 (4) 来源的肿瘤细胞。所有这些多肽在应用于培养的未转化、非肿瘤指示细胞时都会引起以下一系列变化,这些变化为 TGF 提供了一个操作性定义:(i) 单层细胞密度依赖性生长抑制的丧失;(ii) 单层细胞过度生长;(iii) 细胞形状改变,导致指示细胞呈现肿瘤表型;(iv) 获得锚定独立性,从而能够在软琼脂中生长。未转化的非肿瘤细胞不会在软琼脂中形成逐渐生长的菌落,并且培养细胞的这种不依赖锚定的生长特性与体内肿瘤的生长具有特别高的相关性(5-7)。
栽培大豆 ( Glycine max (L.) Merrill ) 是由野生大豆 ( Glycine soja ) 驯化而来,其种子比野生大豆更重,含油量更高。在本研究中,我们利用全基因组关联研究 (GWAS) 鉴定了一个与 SW 相关的新型候选基因。连续三年通过 GWAS 分析检测到候选基因 GmWRI14-like。通过构建过表达 GmWRI14-like 基因的转基因大豆和 gmwri14-like 大豆突变体,我们发现 GmWRI14-like 的过表达增加了 SW 和增加了总脂肪酸含量。然后我们利用 RNA-seq 和 qRT-PCR 鉴定了 GmWRI14-like 直接或间接调控的靶基因。过表达GmWRI14-like的转基因大豆比非转基因大豆株系表现出GmCYP78A50和GmCYP78A69的积累增加。有趣的是,我们还利用酵母双杂交和双分子荧光互补技术发现GmWRI14-like蛋白可以与GmCYP78A69/GmCYP78A50相互作用。我们的研究结果不仅揭示了栽培大豆SW的遗传结构,而且为改良大豆SW和含油量奠定了理论基础。
实施可再生能源产生的广泛方法,[1]和大规模采用电动汽车。[2]这种绿色过渡只有在开发高效且环保的储能系统时才有可能。[1-3]作为最突出和通用的能源存储系统,电池被认为是以环境和社会经济上可疑的方式存储/传递按需功率的至关重要的齿轮。[4]理想情况下,可持续的能源存储设备应提供较大的能力,具有良好的利率能力,具有较长的运行寿命,最重要的是,依赖于无毒和非关键材料。[5–7]这些严格的要求位移锂离子蝙蝠(LIB)是真正绿色电池的首选选择。[5]当前的LIB在电解质(六氟磷酸锂,碳酸盐酯)中使用有毒和易燃化学物质,以及欧盟列出的元素为关键原料(CRMS),包括钴,锂或石墨。[8,9]除了在玻利维亚,阿根廷,智利,澳大利亚和刚果民主共和国的高供应风险外,CRM的处置和随后的海洋/垃圾填埋场都严重威胁动物和 div>
急性肾脏损伤(AKI)是全球骨科创伤手术的主要并发症,尤其是在老年人中(1)。AKI与死亡率的升高(2)和医院住院时间增加有关,其影响与医疗保健资源有关,尤其是对于结果较差的低收入国家(5)。创伤后骨科手术急性肾脏损伤(PTOS-AKI)的危险因素包括高龄,现有的疾病,例如慢性肾脏疾病和冠状动脉疾病(CAD)(2),男性性别(6),低阿尔巴米纳血症和血糖控制不良(7)。手术过程中可能的可修改因素也可能影响AKI的风险,包括选择麻醉(脊髓麻醉会增加AKI的风险升高)(1)(1),使用围血性肾毒性药物和流血过多(3)。脊柱麻醉,预先存在的CAD或失血可能会通过增加围手术性低血压的可能性而导致AKI,这是许多手术中AKI公认的风险因素,尤其是如果平均动脉压(MAP)<65mmHg <65mmHg持续超过5分钟(8)。如果低血压显着,则可以发展出缺血 - 重新灌注损伤(IRI)相关的AKI的次要过程(9)。失血还通过激活辅导补偿过程为AKI提供了进一步的刺激,该补偿过程驱动了围手术期促进性反应(10,11),该反应具有良好的直接和间接的肾毒性作用(12)。这就提出了一个问题,如果有肾内保护机制有助于减轻直接和间接的微管毒性突变过程。在将围手术性AKI推向其常见的肾脏病理生理途径的许多不同的临床因素中是有价值的,即灌注不足,IRI和PROIN浮肿的过程。由于量化了这些过程对单个患者的这些过程的不同影响而引起的,已经尝试确定生物标志物理论上是否与灌注不良的过程(心型脂肪酸结合蛋白(H-FABP)(H-FABP)(H-FABP)和血管性内皮生长因子(VEGMFF)(VEGM)(MIDIM),并促进(MIDMIMMIMMINMINM),并促进细胞因子(13,14)在可检测到的AKI中表现出生物评估的意义。 这种方法已经在心脏手术相关的AKI(CS-AKI)(14)以及骨科骨折手术中生成生物标志物风险评分方面已经显示出一些希望(13)。 尽管在AKI的发病机理中可能会分别考虑浮动灌注和IRI的过程,但重要的是要注意,下灌注和IRI可能会导致次级促进性降低的管状管状损伤,这可能会导致直接的肾小管损伤,这可能会导致仅由Hypopopopoperfusion和IRI引起的直接肾小管损伤(15)。 在这种情况下,注意力集中在心脏手术中的内源性内抗炎性反应上,并没有(16)和没有(17)心肺旁路,是潜在的保护性保护性抗弹性介导的术语术受到的肾脏肾脏损伤(18),并且伴有炎症(18)造成毒性(14)受伤(14)受伤(14)。,已经尝试确定生物标志物理论上是否与灌注不良的过程(心型脂肪酸结合蛋白(H-FABP)(H-FABP)(H-FABP)和血管性内皮生长因子(VEGMFF)(VEGM)(MIDIM),并促进(MIDMIMMIMMINMINM),并促进细胞因子(13,14)在可检测到的AKI中表现出生物评估的意义。这种方法已经在心脏手术相关的AKI(CS-AKI)(14)以及骨科骨折手术中生成生物标志物风险评分方面已经显示出一些希望(13)。尽管在AKI的发病机理中可能会分别考虑浮动灌注和IRI的过程,但重要的是要注意,下灌注和IRI可能会导致次级促进性降低的管状管状损伤,这可能会导致直接的肾小管损伤,这可能会导致仅由Hypopopopoperfusion和IRI引起的直接肾小管损伤(15)。在这种情况下,注意力集中在心脏手术中的内源性内抗炎性反应上,并没有(16)和没有(17)心肺旁路,是潜在的保护性保护性抗弹性介导的术语术受到的肾脏肾脏损伤(18),并且伴有炎症(18)造成毒性(14)受伤(14)受伤(14)。