十年后,当时就职于贝尔实验室的美国数学家彼得·肖尔 (Peter Shor) 设计出了最早的量子算法之一。对于传统(非量子)计算机来说,将两个数字相乘很容易,但执行逆运算(将数字分解为因数)却非常困难。事实上,随着数字越来越大,这个问题很快就会变得难以解决。这个问题非常困难,以至于现代数据加密利用了这种难解性来保护我们的信息。不幸的是,肖尔利用量子力学的特性发现了一种量子算法,可以大大加快这个逆问题的求解速度。一旦我们制造出足够强大的量子计算机来运行它,这一发现就会使当今的数据安全面临风险。
摘要 本文研究了由于发动机轴功率释放而导致的燃油消耗以及由此导致的飞机燃油消耗增加。本文回顾并比较了此类消耗的已发表和未发表数据。通过观察轴功率释放时发动机内部的现象,深入了解了轴功率释放所造成的影响。本文介绍了 TURBOMATCH 发动机仿真模型的结果,该模型已根据真实发动机数据进行了校准。推导出了用于计算由于轴功率释放而导致的燃油消耗的通用方程,并给出了不同飞行高度和马赫数的数值。主要结果是,对于典型的巡航飞行,轴功率因数 k P 约为 0.002 N/W。这使得涡轮风扇发动机的轴功率释放发电效率高达 70% 以上。
SPV 端的谐波和电压调节利用太阳能发电的热潮已经取代了很大一部分传统发电方式,同时,具有大量无功分量的负载实际上会降低系统的功率因数。随着太阳能光伏电站 (SPV) 的普及,功率因数、功率因数校正、无功功率要求和谐波对于消费者和公用事业都变得非常重要。众所周知,电网中的容性负载会导致功率因数超前和过压,而感性负载会导致功率因数滞后和欠压。系统的低功率因数会给电网带来很高的输电负担(和损耗),因此,大多数监管机构都规定允许公用事业公司向大宗消费者收取低功率因数的罚款。传统 SPV 系统以单位功率因数运行,而不考虑公用事业网络的无功功率需求。实际上,这种光伏系统连接到电网时,会降低负载端的功率因数,因为有功功率的一部分是通过 SPV 满足的(其中 SPV 容量小于消费者端的负载),然后电网提供平衡有功功率,但保持相同数量的无功功率给连接的负载。这可以通过以下简单示例来解释:示例:- 图 1 中的前提是消耗 1000kW 的有功功率和 450KVAr 的无功功率,导致功率因数为 0.912(滞后)和标称较低的系统电压。如果该场所安装了一个 500kW SPV 系统,该系统以单位功率因数输出电力,则只有从电网输入的有功功率会减少(以(SPV)发电的程度为准)。从电网吸收的无功功率将保持不变。如果 SPV 电厂发电 500 kW,则从电网吸收的无功功率将为 500kW 和 450kVAR。实际上,电网功率的功率因数将滞后 0.743。因此,负载端的电压将进一步下降。图 1
摘要 — 展示了 SiC 衬底上的外延 AlN 薄膜体声波谐振器 (FBAR),其一阶厚度扩展模式为 15-17 GHz。对于 15 GHz epi-AlN FBAR,其品质因数 Q max ≈ 443、机电耦合系数 k 2 eff ≈ 2 . 3 % 和 f · Q ≈ 6 . 65 THz 品质因数在 Ku 波段 (12-18 GHz) 中名列前茅。具有高品质因数的干净主模式使此类 epi-AlN FBAR 可用于具有干净频带和陡峭抑制的 Ku 波段声波滤波器。由于这种外延 AlN FBAR 与 AlN/GaN/AlN 量子阱高电子迁移率晶体管 (QW HEMT) 共享相同的 SiC 衬底和外延生长,因此它们非常适合与 HEMT 低噪声放大器 (LNA) 和功率放大器 (PA) 进行单片集成。
摘要。超导谐振器具有高品质因数,因此存储能量的衰减时间更长,因此可提供卓越的性能。这些超导谐振器的一个新兴应用是量子计算和量子信息科学,它使我们能够探索和深化对物质的理解,而这些发现可能无法通过传统计算和技术进行探索。量子处理架构使用在微波范围内工作的谐振器和互连电路,以及超导带状线技术和低噪声电子设备进行切换和通信。可以通过将这些设备嵌入三维谐振器中来延长相干时间,从而提高这些设备的性能,从而通过降低错误率并在量子态衰减之前允许更多操作(计算)来提高设备的实用性。在这里,我们简要回顾了当前用于量子计算的微波技术以及提高量子比特相干时间的进展。
PKC(也称为非对称密钥加密)最初开发于 20 世纪 70 年代,通常与 RSA 同义,RSA 是第一个向公众开放的公钥密码系统。它解决了密码系统广泛部署的一个主要障碍:密钥交换。它使用公钥(共享)加密消息,使用私钥(秘密)解密消息。人们发现,通过利用解决一类称为单向函数的数学问题所涉及的计算难度,可以非常安全地做到这一点。例如,将两个非常大的素数相乘很容易,但从乘积中导出素因数却非常困难。当今部署的绝大多数公钥密码系统,包括 RSA 的后继者椭圆曲线密码系统 (ECC),都是基于这一单向函数原理。
在当今世界,密码技术的应用和实现是基于寻找大整数素因数的基本方法,据说这是“不可避免”的。但是生活在一个没有什么是不可能实现的时代,密码技术既要面对机器计算能力的进步,又要面对数学领域的进步,打破大整数分解素数是不可能的观念。为了应对密码学将面临的威胁,人们将物理学与密码学融合在一起,从而导致了量子密码学的发展。它是计算机技术领域发展最快的领域之一。在本文中,我将简要介绍量子密码学的概念以及这项技术如何导致完全安全密钥分发策略的发展。本文介绍了现代密码技术中存在的漏洞、量子密码学的基本原理、它在现实世界中的实现以及该领域面临的局限性,以及量子密码学的未来。
摘要。我们报告了在基于超导微谐振器的定制高灵敏度光谱仪中在毫开尔文温度下进行的电子自旋回波包络调制 (ESEEM) 测量。谐振器的高品质因数和小模式体积(低至 0.2pL)允许探测少量自旋,低至 5 · 10 2 。我们在两个系统上测量了 2 脉冲 15 ESEEM:铒离子与天然丰度 CaWO 4 晶体中的 183 W 核耦合,铋供体与 28 Si 同位素富集的硅基板中的残留 29 Si 核耦合。我们还测量了硅中铋供体的 3 脉冲和 5 脉冲 ESEEM。对于近端核的超精细耦合强度和核自旋浓度都获得了定量一致性。
我的债券并非用于资助直接支持或链接到单个发电厂的基础设施。如何获得认证?...................................................................................................................... 3 如何确定我的系统电网因数是否低于 100 G CO 2 EQ/KWH?.............................................................. 3 如何确定我的系统中至少 67% 的新增容量是否低于 100 G CO 2 EQ/KWH?.................................... 4 我的资产位于未作为一个国家系统互连的电网系统上。如何确定系统是否合格? ........................................................................................................................... 4 我的投资将跨越多个相互关联的控制区域。我能否计算这些多个子系统的合格性?...................................................................................................................... 4 评估系统合格性时接受哪些数据来源?...................................................................................................... 4 我的债券将为智能电表基础设施的安装和运行提供资金?资产必须满足哪些标准?............................................................................................................................. 5 我能否通过可再生能源发电占比来证明系统的合格性? ................................................................................................................................... 5 我应该如何测量 100 G CO 2 / KWH 阈值? ...................................................................................................... 5
电力电子学的基本概念和 4 种不同的转换器类型,由二极管、晶闸管、GTO、MCT、IGBT 和 MOSFET 组成的功率开关的分析,功率和能量方程,参数瞬时值和平均值的计算,电路中线圈和电容器的行为以及有功和无功功率值,非线性源和负载的电路分析以及功率值的计算,THD 和失真因数的解释和计算,非线性负载中整流器的性能分析和方程,CCM 和 DCM 工作模式下 DA-DA 降压转换器的分析,CCM 和 DCM 工作模式下 DA-DA 升压转换器的分析,CCM 和 DCM 工作模式下 DA-DA 降压-升压转换器的分析,Sepic 和 Cuk 转换器的分析,半桥逆变器,全桥逆变器,逆变器对线性和非线性负载的性能分析和检查,AC-AC 转换器,目的和方法。