DALLIAE项目旨在提出一种基于因果(贝叶斯)图[4,5]的通用方法,以检测光束线实验期间的异常及其可解释性。在因果图中,我们将特别关注定向的无环图(DAG)[1]。目标是引入层次因果图,并利用替代因果模型的概念来识别最相关的简单(单参数)和关节(Pa-Rameter组合)因果关系,这些因果链接表征了异常原因的原因。这种方法是必不可少的,这是由于仪器的多尺度性质和完整的梁线,这需要对不同尺度上的因果关系有细微的理解。我们还将专注于量化与已确定的因果链接相关的不确定性,以确保其相关性。由于各种工具,参数[1,3],在实验[2]中的修改,关节效应的组合数量以及数据中异常代表性不足,因此对因果关系的搜索更加困难。在实践中,此方法将限制主要X射线或激光器仪器的操作异常的影响,以了解光束特性与光束线光学元件的物理参数之间的联系。可以随着时间的推移观察到突然的或慢的异常/变化,例如聚焦畸变直接影响测量的质量和速度。尽管AI文献中有许多异常检测方法,但它们通常基于相关性,这在传达因果关系方面无效。因此,理解和征询这些故障的原因以及与最佳测量链性能的偏差对于快速响应和梁线或激光器操作的最大可靠性至关重要。因此,该项目的目的是根据因果图提出可解释的AI,以支持光束线操作员和科学家。任务是开发基于因果关系的模型来确定涉及异常的传感器参数。该方法将补充在合适的时间范围内进行纠正措施的诊断工具。因此,可以将工作分为以下任务:
尽管重要的是揭示世界上的因果关系而不是相关的结构,但这种因果学习的算法仍然是计算征税的。最近的神经证据挑战了增强学习(RL)算法提供有用近似的能力。在这里,我们提出了一种新的强化学习模型,该模型使用修改后的后继表示并结合了进化 - 避免死亡,从而捕获了各种各样的人类结构学习和动物条件。为了正式捕获在野外学习的风险,我们实现了一个约束,在惩罚分配本质上是重仔的,以应对死亡的风险。这将本质的价值赋予在此框架中具有确定性图表,并简单地捕获了广泛的无关和非乐器行为。
观察数据的因果效应估计是经验科学中的基本任务。当没有观察到的混杂因素参与系统时,这变得特别具有挑战性。本文着重于前门调整 - 一种经典技术,使用观察到的调解人即使在存在未观察到的混杂的情况下,也可以识别因果关系。虽然在前门估计的统计特性众所周知,但长期以来其算法方面尚未探索。In 2022, Jeong, Tian, and Bareinboim presented the first polynomial-time algorithm for finding sets satisfying the front-door criterion in a given directed acyclic graph (DAG), with an O ( n 3 ( n + m )) run time, where n denotes the number of variables and m the number of edges of the causal graph.在我们的工作中,我们给出了第一个线性时间,即O(n + M),该任务的算法,因此达到了渐近最佳的时间复杂。此结果意味着所有前门调整集的O(n(n + M))延迟枚举算法,再次将先前的工作提高了n 3。此外,我们提供了第一个线性时算法,用于查找最小的前门调整集。我们在多种编程语言中提供了算法的实现,以促进实际用法并验证其可行性,即使对于大图。