我们用TNG-Cluster(一种新的宇宙磁性水力动力学仿真)分析了气态内培养基(ICM)的物理特性。我们的样本包含352个模拟簇,跨越晕质量范围为10 14我们专注于将簇分类为冷核(CC)和非冷核(NCC)种群的分类,z = 0群集中央ICM属性的分布以及CC群集群体的红移演化。我们分析了熵,温度,电子数密度和压力的分析结构和径向纤维。为了区分CC和NCC簇,我们考虑了几个标准:中央冷却时间,中央熵,中央密度,X射线浓度参数和密度较高的斜率。根据TNG群集,没有先验群集的选择,这些属性的分布是单峰的,因此CCS和NCCS代表了两个极端。在z = 0的整个TNG群集样品中,基于中央冷却时间,强的CC分数为F SCC = 24%,而F wcc = 60%,弱和NCCS分别为16%。然而,尽管趋势的幅度级甚至方向随定义而变化,但CC的比例在很大程度上取决于光环质量和红移。TNG群集中模拟的高质量簇的丰富统计数据使我们能够匹配观测样本并与数据进行比较。tng群集可以用作实验室,以研究因合并,AGN反馈和其他物理过程而引起的群集核心的演变和转换。Z = 0到Z = 2的CC分数与观测值以及热力学量的径向纤维夹在全球范围内以及分配为CC与NCC Halos时。
耦合振荡器网络中的集群同步是科学界广泛关注的课题,其应用范围从神经网络到社交网络、动物网络和技术系统。这些网络大多是有向的,信息或能量流从给定节点单向传播到其他节点。然而,集群同步方面的大多数工作都集中在无向网络上。这里我们描述了一般有向网络中的集群同步。我们的第一个观察结果是,在有向网络中,节点集群 A 可能单向依赖于另一个集群 B:在这种情况下,只要 B 稳定,A 可能保持同步,但反之则不成立。本文的主要贡献是一种将集群稳定性问题转化为不可约形式的方法。通过这种方式,我们将原始问题分解为最低维的子问题,这使我们能够立即检测到集群之间的相互依赖关系。我们将分析应用于两个感兴趣的例子:一个小提琴演奏者组成的人类网络演奏一首乐曲,音乐家可以激活或停用该乐曲的定向交互;以及具有定向层到层连接的多层神经网络。
2目录5 2.1简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.1.1本文档的范围。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.1.2什么是起搏器?。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.2安装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.2.1安装Almalinux 9。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 10 2.2.2配置OS。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。10 2.2.1安装Almalinux 9。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.2.2配置OS。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>21 2.2.3重复第二个音符。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23 2.2.4在节点之间配置通信。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24 2.3设置并群集。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>26 2.3.1简单的使用和群集外壳。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。26 2.3.2安装群集软件。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 2.3.3配置群集软件。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 2.3.4探索PC。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>28 2.4启动并验证群集。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>30 2.4.1开始群集。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>30 2.2.2验证CoroSycc安装。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。31 2.4.3验证起搏器安装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32 2.4.4探索现有配置。。。。。。。。。。。。。。。。。。。。。。。。。。。。33 2.5配置围栏。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34 2.5.1什么是围栏?。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>34 2.5.2选择和围栏设备。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>34 2.5.3配置簇用于围栏。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>35 2.5.4示例。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。35 2.6创建一个主动/被动群集。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 2.6.1添加资源。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 2.6.2执行故障转移。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。39 2.6.3防止恢复后资源移动。。。。。。。。。。。。。。。。。。。。。41 2.7添加Apache HTTP服务器作为群集服务。。。。。。。。。。。。。。。。。。。。。。。。。。42 2.7.1安装Apache。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 42 2.7.2创建网站文档。 。 。 。 。42 2.7.1安装Apache。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。42 2.7.2创建网站文档。 。 。 。 。42 2.7.2创建网站文档。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。42 2.7.3启用Apache状态URL。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。43 2.7.4配置群集。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。43 2.7.5确保在同一主机上运行资源。。。。。。。。。。。。。。。。。。。。。。。。。44 2.7.6确保资源开始和停止。。。。。。。。。。。。。。。。。。。。。。。。45 2.7.7更喜欢一个节点,而不是另一个节点。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46 2.7.8手动移动资源。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。47 2.8使用DRBD复制存储。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。48
在小鼠中,肠道簇细胞被描述为一种长期寿命的有丝分裂后细胞类型,其中30个已经鉴定出了两个不同的子集,称为Tuft-1和Tuft-2 1。通过结合对31次人类肠道切除材料和肠道器官的分析,我们确定了四个不同的32个人簇细胞状态,其中两个与它们的鼠重叠。我们表明,簇簇33细胞的发育取决于Wnt配体的存在,簇状细胞数在白介素(IL)-4和IL-13暴露后迅速增加34,如小鼠2-4中报道。这35个是通过预先存在的簇细胞的扩散而来发生的,而不是通过从干细胞中增加的36产生来发生。的确,在胎儿和成人37人类肠道中,增殖性簇细胞在体内都存在。单个成熟的增殖簇细胞可以形成含有所有38种肠上皮细胞类型的器官。与干细胞和祖细胞不同,人簇细胞生存39辐射损伤,并保留产生所有其他上皮细胞类型的能力。因此,缺乏簇簇细胞的40种手机无法从辐射诱导的损伤中恢复。因此,41个簇细胞代表了人类损伤诱导的储备肠干细胞库。42
美国陆军宪兵学校提供各种功能和核心课程,提供密集、现实和实践培训,为您完成我们今天和未来面临的陆军使命做好准备。培训将充满挑战、令人兴奋,并为您提供提高作为宪兵士兵技能的教育机会。我们的目标是增强我们的知识,并提供在国内和国外履行职责所需的额外工具。宪兵学校致力于为陆军提供训练有素、适应性强的领导者,为未来保留部队做好准备。
在图中查找团伙因其模式匹配能力而有多种应用。k -团伙问题是团伙问题的一种特例,它确定任意图是否包含大小为 k 的团伙,该问题已在量子领域得到解决。列出所有大小为 k 的团伙的 k -团伙问题变体在现代也有流行的应用。尽管如此,这种 k -团伙问题变体在量子环境中的实现仍未触及。在本文中,除了此类 k -团伙问题的理论解决方案之外,还使用 Grover 算法解决了基于量子门的实际实现。该方法进一步扩展到设计经典-量子混合架构中最大团伙问题的电路。该算法自动为任何给定的无向无加权图和任何给定的 k 生成电路,这使我们的方法具有广义性。与最先进的方法相比,对于大图的小 k ,提出的解决 k -团伙问题的方法表现出量子比特成本和电路深度的降低。还提出了一个可以将团问题自动生成电路映射到量子设备的框架。使用IBM的Qiskit对实验结果进行了分析。
气体聚集是一种众所周知的现象,在自然界中通常出现在温度降低的情况下,例如云、雾或霾的形成。大气气体的原子和分子形成非常小的聚集体,称为团簇或纳米颗粒。几十年前,气相聚集原理成为在实验室条件下合成原子和分子团簇用于特定研究应用的新技术的基础[1,2]。从那时起,这项技术逐渐发展成为一种广泛使用的方法,并在20世纪90年代获得了显著的推动力,此后由于与快速发展的纳米科学和纳米技术领域的高度相关性[3-6]。目前市场上可买到的不同类型的气体聚集源与其他物理和化学纳米级合成方法相比具有许多优势,可以调整纳米颗粒参数并将其组装成功能系统,这在各种研究和工业部门中都有很高的需求[7,8]。近年来,人们开展了大量研究以改进气体聚集源以及相关团簇光束操纵系统的性能和能力[9,10]。许多研究探讨了团簇聚集的物理原理和影响其形成的关键参数,从而为控制团簇的组成、形状、大小和结构铺平了道路[11,12]。大量研究致力于将气相合成纳米粒子用作功能纳米材料和光学、催化、传感和成像、生物技术和其他领域的器件的构建块[13]。我们编写这期特刊的目的是讨论气相聚集技术的最新进展、纳米粒子合成和功能化的趋势,以及团簇光束在制备功能纳米材料或纳米级表面改性中的应用。总体而言,本书为读者提供了该领域的各种主题:从核@壳纳米粒子的形成技术到纳米粒子组装基质的应用和纳米尺度的表面改性。这种多样性表明人们对纳米粒子气体聚集和团簇束领域的兴趣是多方面的。本书以 Popok 和 Kyli án [ 14 ] 的综述开始,该综述分析了使用气相聚集法合成纳米材料的最新技术,并概述了主要应用领域,如催化、磁介质的形成、纳米粒子用于传感和检测,以及功能涂层和纳米复合材料的生产。本文从应用的角度很好地概述了不同的团簇物质相互作用机制和团簇束方法的优势。它还解决了集群技术分支的巨大发展与工业层面集群资源的稀疏使用之间的矛盾局面。Skotadis 等人的第二篇论文 [ 15 ] 也是一篇关于气相纳米粒子合成的综述,但特别关注传感技术中的应用。本文概述了基于电导率变化的传感器基质的工作原理
摘要:通过解决经典成核理论 (CNT) 的缺陷,我们开发了一种从成核速率实验中提取小水团簇自由能的方法,而无需对团簇自由能的形式进行任何假设。对于高于 ∼ 250 K 的温度,从实验数据点提取的自由能表明,随着团簇尺寸的变化,它们与 CNT 预测的自由能之比表现出非单调行为。我们表明,对于单体,该比率从几乎为零增加,并在接近大团簇的 1 之前通过(至少)一个最大值。对于低于 ∼ 250 K 的温度,提取的能量与 CNT 预测之间的比率行为会发生变化;它随着团簇尺寸的增加而增加,但对于几乎所有的实验数据点,它都保持在 1 以下。我们还应用了最先进的量子力学模型来计算水团簇(2 − 14 个分子)的自由能;尽管温度高于和低于 ∼ 298 K,结果仍然支持观察到的基于温度的行为变化。我们比较了两种不同的模型化学物质 DLPNO-CCSD(T)/CBS// ω B97xD/6-31++G ** 和 G3,并与水二聚体形成的实验值进行了比较。
摘要。大多数恒星形成块状和亚式结构簇。这些特性也出现在恒星形成云的水力动力模拟中,这为幼年恒星簇的n-身体运行提供了一种逼真的初始条件。然而,在组合时间方面,通过水力学模拟生产大量的初始条件非常昂贵。我们引入了一种新型技术,该技术以微小的计算成本从给定的水力学模拟样本中生成新的初始条件。尤其是我们应用层次聚类算法来学习恒星之间空间和运动学关系的树表示,其中叶子代表单颗恒星,节点描述了在越来越大的尺度下群集的结构。通过简单地修改恒星群集的全局结构,而在使小规模的属性不变的同时,可以将此过程用作随机生成新恒星的基础。
美国陆军宪兵学校提供各种功能和核心课程,提供密集、逼真和亲身实践的培训,帮助您为完成我们今天和未来面临的陆军任务做好准备。培训将充满挑战、令人兴奋,并为您提供提高作为宪兵士兵技能的教育机会。我们的目标是增强我们的知识,并提供在国内和国外履行职责所需的额外工具。宪兵学校致力于为陆军提供训练有素、适应性强的领导者,为未来保留这支部队做好准备。