人工智能简介在《计算机与智能》1中,图灵在论证机器无法通过图灵测试时,揭露了一些常见的谬误。特别是,他解释了为什么“询问者只需向他们提出一些算术问题,就可以区分机器和人类”,因为“机器会因为其致命的准确性而被揭穿”这一信念是错误的。事实上,机器“不会试图给出算术问题的正确答案。它会故意引入错误,以混淆询问者。”因此,机器会通过给出错误的答案,或者简单地说它无法计算答案来隐藏其超人的能力。人工智能在某些任务上取得了超越人类的表现,例如算术或游戏;在本文中,我们认为有时人工智能的能力可能需要受到人为的限制。这种刻意的限制被称为人工智能愚蠢。通过限制人工智能完成任务的能力,以更好地匹配人类的能力,人工智能可以变得更安全,即其能力不会超过人类能力几个数量级。这里的总体趋势是,人工智能在达到人类水平后,往往会迅速达到超越人类的表现水平。例如,对于围棋游戏,在几个月内,最先进的水平从强大的业余选手,到弱小的专业选手,再到超越人类的表现。从那时起,为了让人工智能通过图灵测试,或者让它的行为像人类一样,人工智能设计师必须刻意限制它的能力。
这段对话来自 2014 年电影《机械姬》的早期场景,其中内森邀请凯勒布判断内森是否成功创造出了人工智能。1 强大的通用人工智能的成就长期以来一直吸引着我们的想象力,不仅因为它令人兴奋和担忧的可能性,也因为它为人类带来了一个全新的未知时代。斯图尔特·罗素在 2021 年 BBC 里斯讲座“与人工智能共存”的开场白中指出,“通用人工智能的最终出现将是人类历史上最大的事件。”2 在过去十年中,一系列令人印象深刻的成果引起了公众对强大人工智能可能性的广泛关注。在机器视觉方面,研究人员展示了在某些情况下可以像人类一样甚至比人类更好地识别物体的系统。然后是游戏。复杂的策略游戏长期以来都与超强的智能联系在一起,因此当人工智能系统在国际象棋、雅达利游戏、围棋、将棋、星际争霸和 Dota 中击败最优秀的人类玩家时,全世界都注意到了。这不仅仅是人工智能击败了人类(尽管这在第一次发生时令人震惊),而是他们如何做到这一点的不断进步:最初是通过向人类专家学习,然后是自我学习,然后是从头开始自学游戏原理,最终产生单一系统,
这段对话来自 2014 年电影《机械姬》的早期场景,其中 Nathan 邀请 Caleb 判断 Nathan 是否成功创造了人工智能。1 强大的通用人工智能的成就长期以来一直吸引着我们的想象力,不仅因为它令人兴奋和担忧的可能性,还因为它为人类带来了一个新的未知时代。Stuart Russell 在 2021 年 BBC Reith 讲座“与人工智能共存”的开幕式上表示,“通用人工智能的最终出现 [将是] 人类历史上最大的事件。” 2 在过去十年中,一系列令人印象深刻的成果引起了公众对强大人工智能可能性的广泛关注。在机器视觉方面,研究人员展示了在某些情况下可以像人类一样甚至比人类更好地识别物体的系统。然后是游戏。复杂的策略游戏长期以来一直与高级智能联系在一起,因此当人工智能系统在国际象棋、雅达利游戏、围棋、将棋、星际争霸和 Dota 中击败最优秀的人类玩家时,全世界都注意到了。这不仅仅是人工智能击败了人类(尽管这在第一次发生时令人震惊),而是他们如何做到这一点的不断进步:最初是通过向人类专家学习,然后是自我学习,然后是从头开始自学游戏原理,最终产生了可以学习、玩游戏并获胜的单一系统
游戏长期以来一直是人工智能研究的基准和试验台。近年来,随着人工智能算法的发展和计算能力的提升,人工智能系统在围棋[Silver et al. ,2017]、星际争霸[Vinyals et al. ,2019]和德州扑克[Zhao et al. ,2022]等许多游戏中都取得了超越人类的表现。这些游戏在世界各地举办的季节性和年度活动中都很受欢迎。这种受欢迎程度促使学术界投入精力并开发新算法来解决它们。麻将在世界各地都很流行,尤其是在中国,并且有很多地区变体。由于其不完全信息和多目标性质,它对人工智能算法提出了挑战,但却被人工智能研究界忽视了。为了促进人工智能研究和探索人工智能在麻将中的应用,我们在 IJCAI 举办了三场麻将人工智能竞赛。来自学术界和工业界的数十支团队参与了比赛,他们运用各种算法来构建自己的代理。我们每年都会组织研讨会,邀请顶尖团队进行口头报告,分享他们的方法。比赛结果和他们的报告表明,基于深度学习的现代人工智能算法在这款游戏上具有巨大的潜力,并且优于启发式方法。然而,为了进一步提高人工智能代理的性能,仍有一些悬而未决的问题需要解决。我们希望我们在比赛中的经验能够促进对麻将等复杂现实世界游戏的进一步人工智能研究。
人工智能(AI,artificial intelligence)技术很早就被应用于许多领域,但多年来这项技术并没有获得很高的关注度,直到AlphaGo战胜中韩围棋选手后,才开始成为研究热点,研究人员试图将AI技术应用于不同的领域,其中就包括光通信网络network。在过去的两年里,美国光通信会议(OFC,optical fibrocommunication)和欧洲光通信会议(ECOC,European conference of optical communication)上,至少有16个会议主题集中在AI或机器学习(ML,machine learning)技术上。本文将AI技术与ML技术视为同一类技术,同时,虽然AI技术涵盖范围很广,但本文所指的AI技术主要是神经网络技术。AI技术受到广泛关注主要有以下两个原因。第一,AI技术上手和使用都比较容易。它以黑盒子的方式对系统进行建模,通过大量样本进行学习,让黑盒子自己连接神经元,并分配神经元的连接权重,而不需要用户去理解神经元为什么这样连接,并被分配当前的权重。用户只需要提供足够的学习样本,增加神经元的数量和隐层的数量,就能提高AI技术的预测准确率。第二,AI技术在AlphaGo事件之后,几乎被神化了,几乎人人都知道“人脑人工智能”,而在学术圈,被贴上AI标签的论文也层出不穷。
从历史角度来看,人工智能研究以认知科学领域的计算机科学家、心理学家、工程师、哲学家和生物学家之间的密切合作为基础。这种合作受到控制论方法对自然和人工系统研究的影响,多年来,这种合作在仿生学、机器人学、生物和神经启发系统以及更普遍的认知人工智能系统和系统科学领域中形成了卓有成效的研究方向 [4][10]。然而,经过数十年的相互和开拓性合作,人工智能和认知科学已经产生了几个子学科,每个学科都有自己的目标、方法和评估标准。一方面,这种碎片化促进了一些能够在特定领域(如计算机视觉或国际象棋、Jeopardy、围棋等游戏)产生超人能力的人工智能系统的发展。但另一方面,它却建立在分而治之的方法之上,严重阻碍了跨领域合作和科学研究,这些研究旨在更全面地了解自然智能和人工智能是什么,以及如何通过考虑来自自然界的见解来设计智能制品。然而,近年来,认知启发式人工智能系统领域重新引起了学术界和工业界的关注,人们普遍意识到需要在这个跨学科领域开展更多研究。事实上,用 Aaron Sloman 的话来说,“自然智能和人工智能之间的差距仍然巨大”[21],而这一领域的研究现在似乎对于开发更好的人工智能系统至关重要。特别是,认知研究可以对一系列似乎对人类来说特别容易完成的任务提供有用的见解(由于自动采用
人工智能 (AI) 使用数据和算法来得出与人类得出的结论一样好甚至更好的结论。人工智能已经成为我们日常生活的一部分;它支持人脸识别技术、虚拟助手(如 Amazon Alexa、Apple 的 Siri、Google Assistant 和 Microsoft Cortana)中的语音识别以及自动驾驶汽车。人工智能软件已经能够击败国际象棋、围棋甚至扑克的世界冠军。对于我们的社区而言,它是医疗保健领域创新的重要来源,已经帮助开发新药、支持临床决策并提供放射学质量保证。获得美国食品药品监督管理局或欧盟(即将纳入欧盟医疗器械法规)批准的医学图像分析人工智能应用名单正在迅速增加,并涵盖了各种临床需求,例如使用智能手表检测心律失常或将关键成像研究自动分类到放射科医生的工作列表的首位。深度学习是人工智能的主要工具,在图像模式识别方面表现尤为出色,因此可以为严重依赖图像的医生带来巨大益处,例如超声医师、放射技师和病理学家。尽管产科和妇科超声是最常见的两种影像学研究,但人工智能迄今为止对这一领域的影响不大。尽管如此,人工智能在协助重复性超声任务方面具有巨大潜力,例如自动识别高质量采集并提供即时质量保证。为了发挥这一潜力,人工智能开发人员和超声专业人员之间的跨学科交流是必不可少的。在本文中,我们探讨了医学成像人工智能的基础知识,从理论到适用性,并向超声领域的医疗专业人员介绍了一些关键术语。我们相信,更广泛的人工智能知识将
[福岛19] S. Fukushima:复杂社会中决策与共识构建支持技术发展趋势,人工智能,第34卷,第2期,第131-138页(2019年) [福岛21] S. Fukushima:人工智能研究新趋势:日本的制胜策略,JST CRDS报告,CRDS-FY2021-RR-01(2021年) [福田19] N. Fukuda、S. Fukushima、T. Ito、T. Taniguchi、M. Yokoo:复杂社会中决策与共识构建的AI技术,人工智能,第34卷,第6期,第863-869页(2019年) [郝19] 郝K.:DeepMind希望教AI玩比围棋更难的纸牌游戏,麻省理工学院技术评论,2月5日, 2019,https://www.technologyreview. com/2019/02/05/137577/deepmind-wants-to-teach-ai-how-to-play-a-card-game-thats-harder-than-go/ (2019) [HBR 19] 专题:假新闻,DIAMOND《哈佛商业评论》,2019 年 1 月刊,第 16-82 页 (2019) [Ito 17] Ito, T.、Fujita, K.、Matsuo, N.、Fukuda, N.:基于代理技术创建大规模共识构建支持系统 ─ 迈向实现自动协助代理 ─,人工智能,第 32 卷,第 5 期,第 739-747 页 (2017) [Ito 20] Ito, T.、Suzuki, S.、Yamaguchi, N.、Nishida、T.、Hiraishi、K. 和 Yoshino、K.:D-Agree:基于自动化辅助代理的群体讨论支持系统,第 34 届 AAAI 人工智能会议论文集,第 13614-13615 页 (2020) [Kimura 18] Kimura、Y.、Fukushima、S. 等人:支持复杂社会决策和共识建立的信息科学与技术,JST CRDS 战略提案,
近年来,人工智能 (AI) 击败了世界上最好的人类围棋选手 (Silver 等人2017),成功识别物体的能力超过了普通人 (He 等人2015),并在一场复杂的战略在线游戏中击败了世界上最好的职业玩家 (Vinyals 等人2019)。如今,可比的人工智能不再仅仅是特殊研究项目的主题——人工智能已经通过帮助我们诊断疾病 (Kourou 等人2015) 或控制自然灾害 (Pourghasemi 等人2020) 对我们的生活产生了至关重要的影响。由于人工智能的变革潜力得到广泛认可,组织已经开始在各种业务功能中采用人工智能,以提高效率和效力(例如,Forbes Insights 2018;Bean 2019)。然而,如何管理这项新技术以充分发挥其潜力以及可能出现的潜在后果仍然存在很大的不确定性(Rzepka 和 Berger 2018;Rai 等人2019)。随着机器学习 (ML) 成为现代基于人工智能的信息系统 (IS) 的主要驱动力,管理人工智能的不确定性进一步加剧:ML 标志着一种替代编程范式,允许从数据中获取 IS 功能,而不是让人类明确地将其解决方案转化为代码(Samuel 1959)。利用数据和机器学习算法的人工智能通过从数据中得出模式来智能地行事,然后将其应用于新数据以执行操作 (Bishop 2006)。由此产生的解决方案设计移交给数据驱动算法以及出现的技术特殊性使得我们有必要重新审视我们现有的关于如何成功管理 IS 的知识。
人工智能 (AI) 和神经科学的最新进展令人印象深刻。在人工智能领域,这包括开发可以击败围棋大师或在癌症检测方面胜过人类放射科医生的计算机程序。这些技术发展中的很大一部分与人工神经网络的进步直接相关——最初受到我们对大脑如何进行计算的认识的启发。与此同时,神经科学在理解大脑方面也取得了重大进展。例如,在空间导航领域,有关认知图(空间的内部表示)的神经计算机制和大脑区域的知识最近获得了诺贝尔医学奖。神经科学最近的大部分进展部分归功于技术的发展,该技术用于以极高的时间和空间分辨率记录动物行为中大脑多个区域的大量神经元。随着这些技术使我们能够收集大量数据,人们对人工智能与神经科学的交叉点的兴趣日益浓厚,其中许多交叉点涉及使用人工智能作为探索和分析这些大型数据集的新工具。但是,鉴于共同的初始动机点——了解大脑——这些学科可以更紧密地联系在一起。目前,这种潜在的协同作用大部分尚未实现。我们认为空间导航是这两个学科可以融合以促进我们对大脑的了解的绝佳领域。在这篇评论中,我们首先总结了空间导航和强化学习的神经科学进展。然后,我们将注意力转向讨论如何使用描述性、机械性和规范性方法对空间导航进行建模,以及在这些模型中使用人工智能。接下来,我们讨论人工智能如何推动神经科学的发展,神经科学如何推动人工智能的发展,以及这些方法的局限性。最后,我们重点介绍了一些有前景的研究方向,其中空间导航可以成为神经科学和人工智能的交汇点,以及这如何有助于促进对智能行为的理解。