在匈牙利和世界上,癌症的数量大大增加。是发病率和死亡率的主要原因之一。近年来,个性化治疗方法和靶向疗法的出现在癌症治疗方面取得了重大进展。有针对性的眼泪的基础是确定患者肿瘤的遗传差异。但是,组织或细胞学采样可能会导致许多困难,这可能是无创方法的良好替代方法,例如Fidel活检测试。可以从液体活检样品,旋转核酸或游离循环肿瘤DNA,-RNA中检测到相同的遗传差异,这也适用于肿瘤及其对治疗的定量定义。在我们的摘要中,我们知道检查液体活检样本的好处和困难以及它们在实体瘤的日常临床实践中使用的可能性。Magy Onkol 67:125-130,2023
商业锂离子电池自1990年代引入以来的30年来,对我们的社会产生了深远的影响。[1]从在微型电子产品中工作到是电动汽车的核心,锂离子电池的能量状况正在增加,但是在这些成就的背后是艰难的挣扎。commersercial锂离子电池通常使用石墨作为阳极,其理论能力为372 mAh g-1,匹配适用的阴极,通常具有细胞级的能量密度,通常为≈250wh kg-1(≈700wh l-1)。[2,3]通过将硅添加到石墨中,可以进一步提高能量密度,[4],但目前也限制为≈300wh kg -1。使用锂金属阳极对于显着增加电池能量密度至关重要。锂金属在所有可行的阳极材料中都具有低氧化还原电势(与标准氢电解质[SHE]与标准氢电解质[SHE]与标准氢电解质[SHE]与标准氢电解质[SHA]与标准氢电解质[SHE]的)(3860 mAh g -1,3860 mAh g -1,3860 mAh g -1)中的。 [2,5] LI-LMO电池(锂过渡金属氧化物[LMO])可以提供≈440WH kg-1的特异能量。 [2]但是,锂电池需要过多的锂作为阳极,这阻碍了能量密度的增加。 因此,引入了无阳极(可充电)锂金属电池(AFLMB),以帮助任何给定的岩体阴极系统提供最大的能量密度。 AFLMB是一种锂金属电池,在首次电荷期间形成初始锂阳极。 [6–8]。[2,5] LI-LMO电池(锂过渡金属氧化物[LMO])可以提供≈440WH kg-1的特异能量。[2]但是,锂电池需要过多的锂作为阳极,这阻碍了能量密度的增加。因此,引入了无阳极(可充电)锂金属电池(AFLMB),以帮助任何给定的岩体阴极系统提供最大的能量密度。AFLMB是一种锂金属电池,在首次电荷期间形成初始锂阳极。[6–8]更具体地说,从锂化阴极中提取的锂离子被可逆地镀到裸电的收集器(CC)上,作为锂金属,这意味着在阳极与阴极容量比(N/P)中的预储存的锂完全零。基于此构造,AFLMBS比当前基于锂的电池具有多个优点:1)增加体积和重量的能量密度; 2)改善了没有大量锂金属的细胞安全性; 3)简化的制造过程,因为不再需要超薄的锂金属; 4)由于细胞组装过程中没有游离锂金属,改善了日历寿命和安全性; 5)由于缺乏过量的锂金属来补充不可逆的损失,因此对锂金属蝙蝠的电化学性能进行了更现实的评估。但是,就像其他液态锂金属电池一样,液体AFLMB面临着由于周期期间树突状锂的生长而导致的内部短路和灾难性细胞故障的可能性。
是什么:弗拉格斯特AFF和Sunstate Environmental Services,Inc。的城市已与Wildcat Hill的Shincci烘干机合作开展飞行员项目。烘干机(一个低温污泥处理单元)结合了除湿和能量回收。这种环境利用能量意味着在干燥过程中没有浪费任何热量。
接受固体器官移植的患者需要终身免疫抑制以防止器官排斥。在器官移植中,免疫抑制的理想形式是在不损害宿主防御措施或增加所有类型的生物体感染的易感性的情况下诱导供体特异性耐受性。针对固体器官移植受者处方的最常见的免疫抑制剂是:这些药物中的每一种都有其自身的不良效果和毒性特征,可能导致严重的发病率或死亡率。患者和移植小组对这些并发症进行仔细管理对于移植成功至关重要。BC移植资金为具有BC医疗服务计划覆盖范围的固体器官和胰岛细胞移植受者提供以下门诊免疫抑制剂,并在遵循BC移植的情况下注册,遵循:遵循:门诊免疫抑制:
缓解空间碎片问题需要实施卫星终止处置策略。潜在的有利解决方案之一是使用固体推进进行直接去义。本文概述了固体火箭电机的概念和开发以及专门用于DeOrbitation操纵的其他系统的组件。此解决方案是自2016年由ukasiwicz Research Network - 航空研究所与波兰合作伙伴合作的欧洲航天局。在成功开发并预先合格的新专用推进剂组成之后,还解决了其他设计挑战,以构建和测试电动机的工程模型。本文提供了有关需求及其对设计的影响的信息,进行了众多权衡的结果以及材料选择的注意事项。它还概述了推进剂测试的结果以及为运动开发计划的验证。工作还包括系统级别的方面,集群和可扩展性,以在广泛的未来卫星中实现。至关重要的零件以及最终实施 - 还讨论了推力向量控制系统。还计划了开发中的下一步,包括轨道示范。这证明可以在此具有挑战性的应用中成功使用固体火箭推进。