5。Yetisen,又名等,光子水凝胶传感器。生物技术进步,2016年。34(3):p。 250-271。6。Zhang,D。等人,从设计到刺激反应性水凝胶应变传感器的应用。材料杂志化学杂志b,2020。8(16):p。 3171-3191。7。ionov,L。,基于水凝胶的执行器:可能性和局限性。今天的材料,2014年。17(10):p。 494-503。8。Cheng,F.-M.,H.-X. Chen和H.-D.李,水凝胶执行器的最新进展。 材料杂志化学杂志b,2021。 9(7):p。 1762-1780。 9。 Hu,L。等人,利用刺激反应性聚合物的动力。 高级功能材料,2020年。 30(2):p。 1903471。 10。 li,J。和D.J. Mooney,设计用于控制药物输送的水凝胶。 自然评论材料,2016年。 1(12):p。 1-17。 11。 Sun,Z。等,基于水凝胶的受控药物输送用于癌症治疗:评论。 Molecular Pharmaceutics,2019年。 17(2):p。 373-391。 12。 SOOD,N。等人,药物输送和组织工程中的刺激性反应性水凝胶。 药物交付,2016年。 23(3):p。 748-770。 13。 Koetting,M.C。等人,刺激反应性水凝胶:理论,现代进步和应用。 材料科学与工程:R:报告,2015年。 93:p。 1-49。 14。 刘,Z.,W。Toh和T.Y. 15。Cheng,F.-M.,H.-X.Chen和H.-D.李,水凝胶执行器的最新进展。 材料杂志化学杂志b,2021。 9(7):p。 1762-1780。 9。 Hu,L。等人,利用刺激反应性聚合物的动力。 高级功能材料,2020年。 30(2):p。 1903471。 10。 li,J。和D.J. Mooney,设计用于控制药物输送的水凝胶。 自然评论材料,2016年。 1(12):p。 1-17。 11。 Sun,Z。等,基于水凝胶的受控药物输送用于癌症治疗:评论。 Molecular Pharmaceutics,2019年。 17(2):p。 373-391。 12。 SOOD,N。等人,药物输送和组织工程中的刺激性反应性水凝胶。 药物交付,2016年。 23(3):p。 748-770。 13。 Koetting,M.C。等人,刺激反应性水凝胶:理论,现代进步和应用。 材料科学与工程:R:报告,2015年。 93:p。 1-49。 14。 刘,Z.,W。Toh和T.Y. 15。Chen和H.-D.李,水凝胶执行器的最新进展。材料杂志化学杂志b,2021。9(7):p。 1762-1780。9。Hu,L。等人,利用刺激反应性聚合物的动力。高级功能材料,2020年。30(2):p。 1903471。10。li,J。和D.J.Mooney,设计用于控制药物输送的水凝胶。自然评论材料,2016年。1(12):p。 1-17。11。Sun,Z。等,基于水凝胶的受控药物输送用于癌症治疗:评论。Molecular Pharmaceutics,2019年。17(2):p。 373-391。12。SOOD,N。等人,药物输送和组织工程中的刺激性反应性水凝胶。药物交付,2016年。23(3):p。 748-770。13。Koetting,M.C。等人,刺激反应性水凝胶:理论,现代进步和应用。材料科学与工程:R:报告,2015年。93:p。 1-49。14。刘,Z.,W。Toh和T.Y. 15。刘,Z.,W。Toh和T.Y.15。ng,软材料力学的进步:综述了水凝胶的大变形行为。国际应用机制杂志,2015年。7(05):p。 1530001。Huang,R。等人,智能材料组成型模型的最新进展 - 水凝胶和成形记忆聚合物。国际应用机制杂志,2020年。12(02):p。 2050014。16。Quesada-Pérez,M。等,凝胶肿胀理论:古典形式主义和最近的方法。软件,2011年。7(22):p。 10536-10547。17。Fennell,E。和J.M.Huyghe,化学响应式水凝胶变形力学:评论。分子,2019年。24(19):p。 3521。18。Ganji,F.,F.S。 vasheghani和F.E. vasheghani,水凝胶肿胀的理论描述:评论。 2010。 19。 Lei,J。等人,用于机械行为研究的水凝胶网络模型的最新进展。 Acta Mechanica Sinica,2021。 37:p。 367-386。 20。 Zhan,Y。等人,在多功能抗固定聚合物水凝胶方面的进步。 材料科学与工程:C,2021。 127:p。 112208。 21。 Wu,S。等人,对水凝胶体积转变的建模研究。 大分子理论与模拟,2004年。 13(1):p。 13-29。 22。 Richter,A。等人,基于水凝胶的pH传感器和微传感器的综述。 传感器,2008。 8(1):p。 561-581。 23。 水,2020年。 24。Ganji,F.,F.S。vasheghani和F.E.vasheghani,水凝胶肿胀的理论描述:评论。2010。19。Lei,J。等人,用于机械行为研究的水凝胶网络模型的最新进展。Acta Mechanica Sinica,2021。37:p。 367-386。20。Zhan,Y。等人,在多功能抗固定聚合物水凝胶方面的进步。材料科学与工程:C,2021。127:p。 112208。21。Wu,S。等人,对水凝胶体积转变的建模研究。大分子理论与模拟,2004年。13(1):p。 13-29。22。Richter,A。等人,基于水凝胶的pH传感器和微传感器的综述。传感器,2008。8(1):p。 561-581。23。水,2020年。24。Wang,J。等人,作为正向渗透过程中的抽吸溶液的最新发展和未来挑战。12(3):p。 692。Cai,S。和Z. Suo,理想弹性凝胶的状态方程。epl(Europhysics Letters),2012年。97(3):p。 34009。25。li,J。等人,理想弹性凝胶的状态方程的实验确定。软件,2012年。8(31):p。 8121-8128。26。subramani,R。等人,肿胀对聚丙烯酰胺水凝胶弹性特性的影响。材料中的边界,2020年。7:p。 212。27。Kim,J。,T。Yin和Z. Suo,聚丙烯酰胺水凝胶。 V.聚合物网络中的某些链带负载,但所有链都会导致肿胀。 固体力学和物理学杂志,2022年。 168:p。 105017。 28。 Xu,S。等人,在脱水下同时加强和软化。 科学进步,2023年。 9(1):p。 EADE3240。Kim,J。,T。Yin和Z. Suo,聚丙烯酰胺水凝胶。V.聚合物网络中的某些链带负载,但所有链都会导致肿胀。固体力学和物理学杂志,2022年。168:p。 105017。28。Xu,S。等人,在脱水下同时加强和软化。科学进步,2023年。9(1):p。 EADE3240。
MATH 141 微积分 2 4 P -MATH 140 PHYS 142 电磁学和光学 4 P - PHYS 131 / C - MATH 141 CS 补充研究 B 组 (HSSML) - 1* 3 - 15 学分 先决条件/共同必修课程 WCOM 206 工程交流 3 - MATH 262 中级微积分 3 P - MATH 133, MATH 141 MECH 289 设计图形 3 - MIME 250 萃取冶金学简介 3 C - WCOM 206 MIME 261 材料结构 3 - 15 学分 先决条件/共同必修课程 CHEM 233 物理化学专题 3 - CIVE 205 静力学 3 - MIME 209 数学应用 3 - MIME 212 工程热力学 3 - MIME 341 矿物加工简介 3 P - MIME 200 或 MIME 250 3 学分 先决条件/共同必修课程 MATH 263 工程师常微分方程 3 C - MATH 262 17 学分 先决条件/共同必修课程 CIVE 207 固体力学 4 P - CIVE 205 或 MECH 210 COMP 208 工程计算机 3 P - 微分和积分 [MATH 140 和 MATH 141] / C - 线性代数 [MATH 133] FACC 250 专业工程师的职责 0 P - FACC 100 或 BREE 250 MIME 317 分析和表征技术 3 P - MIME 261 MIME 356 热、质和流体流动 4 P - MIME 212 MIME 360 相变:固体 3 P - MIME 260 或 MIME 261 / P 或 C - MIME 212 2 学分 先决条件/共同必修课程 MIME 280 工业培训 1 2 P - 40 课程学分 12 学分 先决条件/共同必修课程 FACC 300 工程经济学 3 - MIME 345 聚合物的应用 3 P - MIME 261 或讲师许可 MIME 350 萃取冶金工程 3 P - MIME 200 或 MIME 250、MIME 212 MIME 467 材料的电子特性 3 P - MIME 261、MATH 263 18 学分 先决条件/共同必修课程 ECSE 209 电工技术 3 P - PHYS 142 MIME 352 加氢化学处理 3 P - CHEM 233、 MIME 200 或 MIME 250、MIME 212、MIME 356 MIME 362 机械性能 3 P - MIME 360 MIME 465 金属和陶瓷粉末加工 3 P - MIME 360 MIME 470 工程生物材料 3 P - MIME 261 MIME xxx 技术补充 3 - 15 学分 先决条件/共同必修课 MATH 264 工程师高级微积分 3 P - MATH 262 / C - MATH 263 MIME 311 建模与自动控制 3 P - MIME 356 MIME 455 高级过程工程 3 P - MIME 356 MIME xxx 技术补充 3 - CS 补充研究组 A(影响)* 3 - 2 学分 先决条件/共同必修课 MIME 380 工业培训 2 2 P - MIME 280 2 学分 先决条件/共同必修课程 MIME 480 工业培训 3 2 P - MIME 380 17 学分 先决条件/共同必修课程 FACC 400 工程专业实践 1 P - FACC 100、FACC 250** 和 60 个课程学分 MIME 452 工艺与材料设计 4 - MIME 456 炼钢与钢铁加工 3 P - MIME 360 / P 或 C - MIME 455 MIME 473 计算材料设计简介 3 P - MIME 209 和 MIME 261,或经讲师许可 MIME xxx 技术补充 3 - CS 补充研究 B 组 (HSSML) - 2* 3 -
Pretoria大学Schalk Kok教授,“替代建模的最新进展”摘要Schalk Kok教授将对替代建模的个人观点展示。 他已经从事代理模型工作了近三十年。 他的第一次接触替代模型发生在1996年的硕士研究期间,当时他使用多项式替代物代替了瞬时的热弹性有限元模型。 下一步在2009年遇到了代孕,他参与了网状运动项目。 径向基函数用于在流体结构相互作用(FSI)求解器中移动流体网格。 最近(2022-2024),Kok教授和Nico Wilke教授监督博士生Johann Bouwer,以发展近乎最佳的梯度增强了代理人。 特定值得注意的是开发数据预处理步骤,该步骤使用缩放和旋转来转换数据集。 目的是将数据集转换为更多各向同性,这使得径向基函数替代(由各向同性基函数的求和组成)更有可能准确地近似数据。 Schalk Kok教授是机械工程领域的经验丰富的学者,目前是比勒陀利亚大学机械和航空工程系的教授兼负责人。 目前,他还被任命为EBIT教师工程学院主席。 Kok教授完成了他的B.Eng。 和M.Eng。 Kok教授的专业旅程跨越了学术界和应用研究。Pretoria大学Schalk Kok教授,“替代建模的最新进展”摘要Schalk Kok教授将对替代建模的个人观点展示。他已经从事代理模型工作了近三十年。他的第一次接触替代模型发生在1996年的硕士研究期间,当时他使用多项式替代物代替了瞬时的热弹性有限元模型。下一步在2009年遇到了代孕,他参与了网状运动项目。径向基函数用于在流体结构相互作用(FSI)求解器中移动流体网格。最近(2022-2024),Kok教授和Nico Wilke教授监督博士生Johann Bouwer,以发展近乎最佳的梯度增强了代理人。特定值得注意的是开发数据预处理步骤,该步骤使用缩放和旋转来转换数据集。目的是将数据集转换为更多各向同性,这使得径向基函数替代(由各向同性基函数的求和组成)更有可能准确地近似数据。Schalk Kok教授是机械工程领域的经验丰富的学者,目前是比勒陀利亚大学机械和航空工程系的教授兼负责人。目前,他还被任命为EBIT教师工程学院主席。Kok教授完成了他的B.Eng。 和M.Eng。 Kok教授的专业旅程跨越了学术界和应用研究。Kok教授完成了他的B.Eng。和M.Eng。Kok教授的专业旅程跨越了学术界和应用研究。Kok教授的专业旅程跨越了学术界和应用研究。比勒陀利亚大学的学位,然后是博士学位。在伊利诺伊大学Urbana-Champaign大学,得到包括富布赖特奖在内的著名奖学金的支持。从2003年到2009年,他在2009年至2013年的科学与工业研究委员会(CSIR)工作,并于2013年返回比勒陀利亚大学。自返回UP以来,他的研究集中在计算固体力学和材料建模上,这是有限元分析和材料参数识别等领域的。他的贡献也扩展到了专业服务,包括在南非理论和应用机械师协会(SAAM)中的领导角色。他是Saam的前任总裁,连续三年任职(2010-2016)。
教育1982年7月:高中科学研究学位,(60/60)。1988年4月:劳雷亚(科学硕士),(100/100,具有荣誉),在结构工程中。论文:弹性塑料对循环载荷的响应:shakedown分析,先验边界,进化分析。从1991年5月到1998年10月的职位:意大利Politecnico di Milano的结构工程的Ricercatore(助理教授)。从1998年11月到2002年8月:意大利Politecnico di Milano的结构工程教授(副教授)。从2002年9月开始:意大利Politecnico di Milano的结构工程教授教授(完整的教授)。从2005年9月开始:意大利Politecnico di Milano的结构工程教授(任职教授的完整教授)。从2009年1月到2012年12月:意大利Politecnico di Milano的结构工程系副主管。教学活动的材料强度,结构力学,有限元素,计算力学,极限分析,可塑性理论,本科生的微电机械系统;高级断裂力学,博士生的微电机械系统。其他工作经验1988年7月 - 1989年10月:军事工程团中尉的服务。1991年12月至1992年11月:LaboratoiredeMécaniqueet Technologie Cachan的研究活动 - 法国与CNR(意大利国家研究委员会)赠款。2004年7月至8月:美国伊利诺伊州埃文斯顿市西北大学机械工程系的来访学者。1996年7月,1997年2月,1999年7月,2006年5月:Ecole Normale Superieure Cachan的客座教授,在LaboratoiredeMécaniqueet Technologie工作。奖项2006年2月:布鲁诺·芬兹(Bruno Finzi)理性力学奖,伊斯蒂托托·伦巴多(Istituto Lombardo Accademia)di scienze e Lettere。2015年7月:欧洲力学协会任命Euromech研究员。 2018年7月:Istituto Lombardo Accademia di Scienze E Lettere的成员。 全体和半百年讲座•2010年半百年讲“微系统自发粘附现象的建模” ECCM 2010 PARIS,2010年5月16日至21日。 •2012年在2012年国会ICTAM 2012,2012年8月19日至24日在2012年国会ICTAM举行的“微生物和力学”演讲。。2015年7月:欧洲力学协会任命Euromech研究员。2018年7月:Istituto Lombardo Accademia di Scienze E Lettere的成员。全体和半百年讲座•2010年半百年讲“微系统自发粘附现象的建模” ECCM 2010 PARIS,2010年5月16日至21日。•2012年在2012年国会ICTAM 2012,2012年8月19日至24日在2012年国会ICTAM举行的“微生物和力学”演讲。•2013年全体会议“微系统计算方法的最新进展”,2013年6月24日至26日,国会智能2013年。•2015年全体讲座“微系统中的非线性力学和数值模拟:最新进步和应用”。APM 15,S。Petersburg,2015年6月22日至27日。•2017年全体讲座“具有辅助和超宽带隙特性的超材料”。APM 17,S。Petersburg,2017年6月22日至26日。•2019年全体讲座“微系统和印刷传感器的最新进展”。APM 17,S。Petersburg,2019年6月24日至29日。IUTAM 2020年ITAM主席执行国会委员会的科学协会成员2020年(推迟到ICTAM2020+1),2016年至2021年。2013年至2018年欧洲固体力学会议委员会(ESMCC)主席。
MATH 141 微积分 2 4 P -MATH 140 PHYS 142 电磁学和光学 4 P - PHYS 131 / C - MATH 141 CS 补充研究 B 组 (HSSML) - 1* 3 - 15 学分 先决条件/共同必修课程 WCOM 206 工程通信 3 - MATH 262 中级微积分 3 P - MATH 133, MATH 141 MECH 289 设计图形 3 - MIME 250 萃取冶金学简介 3 C - WCOM 206 MIME 261 材料结构 3 - 15 学分 先决条件/共同必修课程 CHEM 233 物理化学专题 3 - CIVE 205 静力学 3 - MIME 209 数学应用 3 - MIME 212 工程热力学 3 - MIME 341 矿物加工简介 3 P - MIME 200 或 MIME 250 3 学分 先决条件/共同必修课程 MATH 263 工程师常微分方程 3 C - MATH 262 17 学分 先决条件/共同必修课程 CIVE 207 固体力学 4 P - CIVE 205 或 MECH 210 COMP 208 工程计算机 3 P - 微分和积分 [MATH 140 和 MATH 141] / C - 线性代数 [MATH 133] FACC 250 专业工程师的职责 0 P - FACC 100 或 BREE 250 MIME 317 分析和表征技术 3 P - MIME 261 MIME 356 热、质和流体流动 4 P - MIME 212 MIME 360 相变:固体 3 P - MIME 260 或 MIME 261 / P 或 C - MIME 212 2 学分 先决条件/共同必修课程 MIME 280 工业培训 1 2 P - 40 课程学分 12 学分 先决条件/共同必修课程 FACC 300 工程经济学 3 - MIME 345 聚合物的应用 3 P - MIME 261 或讲师许可 MIME 350 萃取冶金工程 3 P - MIME 200 或 MIME 250、MIME 212 MIME 467 材料的电子特性 3 P - MIME 261、MATH 263 18 学分 先决条件/共同必修课程 ECSE 209 电工技术 3 P - PHYS 142 MIME 352 水化学处理 3 P - CHEM 233、 MIME 200 或 MIME 250、MIME 212、MIME 356 MIME 362 机械性能 3 P - MIME 360 MIME 465 金属和陶瓷粉末加工 3 P - MIME 360 MIME 470 工程生物材料 3 P - MIME 261 MIME xxx 技术补充 3 - 15 学分 先决条件/共同要求 MATH 264 工程师高级微积分 3 P - MATH 262 / C - MATH 263 MIME 311 建模与自动控制 3 P - MIME 356 MIME 455 高级过程工程 3 P - MIME 356 MIME xxx 技术补充 3 - CS 补充研究组 A(影响)* 3 - 2 学分 先决条件/共同要求 MIME 380 工业培训 2 2 P - MIME 280 2 学分 先决条件/共同要求 MIME 480 工业培训 3 2 P - MIME 380 17 学分 先决条件/共同要求 FACC 400 工程专业实践 1 P - FACC 100、FACC 250** 和 60 个课程学分 MIME 452 工艺与材料设计 4 P - MIME 311、MIME 341、MIME 352、MIME 362、FACC 300、CCOM 206 MIME 456 炼钢与钢铁加工 3 P - MIME 360 / P 或 C - MIME 455 MIME 473 计算材料设计简介 3 P - MIME 209 和 MIME 261,或经讲师许可 MIME xxx 技术补充 3 - CS 补充研究 B 组 (HSSML) - 2* 3 -
Pretoria大学Schalk Kok教授,“替代建模的最新进展”摘要Schalk Kok教授将对替代建模的个人观点展示。 他已经从事代理模型工作了近三十年。 他的第一次接触替代模型发生在1996年的硕士研究期间,当时他使用多项式替代物代替了瞬时的热弹性有限元模型。 下一步在2009年遇到了代孕,他参与了网状运动项目。 径向基函数用于在流体结构相互作用(FSI)求解器中移动流体网格。 最近(2022-2024),Kok教授和Nico Wilke教授监督博士生Johann Bouwer,以发展近乎最佳的梯度增强了代理人。 特定值得注意的是开发数据预处理步骤,该步骤使用缩放和旋转来转换数据集。 目的是将数据集转换为更多各向同性,这使得径向基函数替代(由各向同性基函数的求和组成)更有可能准确地近似数据。 Schalk Kok教授是机械工程领域的经验丰富的学者,目前是比勒陀利亚大学机械和航空工程系的教授兼负责人。 目前,他还被任命为EBIT教师工程学院主席。 Kok教授完成了他的B.Eng。 和M.Eng。 Kok教授的专业旅程跨越了学术界和应用研究。Pretoria大学Schalk Kok教授,“替代建模的最新进展”摘要Schalk Kok教授将对替代建模的个人观点展示。他已经从事代理模型工作了近三十年。他的第一次接触替代模型发生在1996年的硕士研究期间,当时他使用多项式替代物代替了瞬时的热弹性有限元模型。下一步在2009年遇到了代孕,他参与了网状运动项目。径向基函数用于在流体结构相互作用(FSI)求解器中移动流体网格。最近(2022-2024),Kok教授和Nico Wilke教授监督博士生Johann Bouwer,以发展近乎最佳的梯度增强了代理人。特定值得注意的是开发数据预处理步骤,该步骤使用缩放和旋转来转换数据集。目的是将数据集转换为更多各向同性,这使得径向基函数替代(由各向同性基函数的求和组成)更有可能准确地近似数据。Schalk Kok教授是机械工程领域的经验丰富的学者,目前是比勒陀利亚大学机械和航空工程系的教授兼负责人。目前,他还被任命为EBIT教师工程学院主席。Kok教授完成了他的B.Eng。 和M.Eng。 Kok教授的专业旅程跨越了学术界和应用研究。Kok教授完成了他的B.Eng。和M.Eng。Kok教授的专业旅程跨越了学术界和应用研究。Kok教授的专业旅程跨越了学术界和应用研究。比勒陀利亚大学的学位,然后是博士学位。在伊利诺伊大学Urbana-Champaign大学,得到包括富布赖特奖在内的著名奖学金的支持。从2003年到2009年,他在2009年至2013年的科学与工业研究委员会(CSIR)工作,并于2013年返回比勒陀利亚大学。自返回UP以来,他的研究集中在计算固体力学和材料建模上,这是有限元分析和材料参数识别等领域的。他的贡献也扩展到了专业服务,包括在南非理论和应用机械师协会(SAAM)中的领导角色。他是Saam的前任总裁,连续三年任职(2010-2016)。
CEGEP 入学 15 学分 先决条件/共同必修课程 CCOM 206 工程交流 3 - MATH 262 中级微积分 3 P - MATH 133 或同等学历,MATH 141 或同等学历 MECH 289 设计图形 3 - MIME 250 冶金萃取概论 3 C - CCOM 206 MIME 261 材料结构 3 - 16 学分 先决条件/共同必修课程 CHEM 233 物理化学专题 3 - CIVE 205 静力学 3 - FACC 100 工程专业概论 1 - MIME 209 数学应用 3 - MIME 212 工程热力学 3 - MIME 341 矿物加工概论 3 P - MIME 200 或 MIME 250 3 学分 先决条件/共同必修课程 MATH 263工程师常微分方程 3 C - MATH 262 17 学分 先修课程/共同必修课程 CIVE 207 固体力学 4 P - CIVE 205 或 MECH 210 COMP 208 工程计算机 3 P - 微分和积分 [MATH 140 和 MATH 141] / C - 线性代数 [MATH 133] FACC 250 专业工程师的职责 0 P - FACC 100 或 BREE 250 MIME 317 分析和表征技术 3 P - MIME 261 MIME 356 热、质和流体流动 4 P - MIME 212 MIME 360 相变:固体 3 P - MIME 260 或 MIME 261 / P 或 C - MIME 212 2 学分先决条件/共同必修课程 MIME 280 工业培训 1 2 P - 40 个课程学分 12 个学分 先决条件/共同必修课程 FACC 300 工程经济学 3 - MIME 345 聚合物的应用 3 P - MIME 261 或讲师许可 MIME 350 萃取冶金工程 3 P - MIME 200 或 MIME 250、MIME 212 MIME 467 材料的电子特性 3 P - MIME 261、MATH 263 18 个学分 先决条件/共同必修课程 ECSE 461 电机 3 - MIME 352 水化学处理 3 P - CHEM 233、MIME 200 或 MIME 250、MIME 212、MIME 356 MIME 362 机械特性 3 P - MIME 360 MIME 465 金属与陶瓷粉末加工 3 P - MIME 360 MIME 470 工程生物材料 3 P - MIME 261 MIME xxx 技术补充 3 - 15 学分 先决条件/共同要求 MATH 264 工程师高等微积分 3 P - MATH 262 / C - MATH 263 MIME 311 建模与自动控制 3 P - MIME 356 MIME 455 高级过程工程 3 P - MIME 356 MIME xxx 技术补充 3 - CS 补充研究 A 组(影响)* 3 - 2 学分 先决条件/共同要求 MIME 380 工业培训 2 2 P - MIME 280 2 学分 先决条件/共同要求 MIME 480 工业培训 3 2 P - MIME 380 17学分 先决条件/共同要求 FACC 400 工程专业实践 1 P - FACC 100、FACC 250** 和 60 个课程学分 MIME 452 工艺与材料设计 4 - MIME 456 炼钢与钢铁加工 3 P - MIME 360 / P 或 C - MIME 455 MIME 473 计算材料设计简介 3 P - MIME 209 和 MIME 261,或经讲师许可 MIME xxx 技术补充 3 - CS 补充研究 B 组 (HSSML)* 3 -
添加剂制造/合金设计和材料选择的材料和过程简介。。。。。。。。。3 Rachel Boillat,Sriram Praneeth Isanaka和密苏里州科学技术大学传统合金系统的Frank Liou。。。。。。。。。。。。。。。。。。。。。。。。。。3增材制造过程。。。。。。。。。。。。。。。。。。。。5使用增材制造的加工性。。。。。。。。。。。。。8材料微结构,缺陷以及对机械行为的影响。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8定制合金的开发。。。。。。。。。。。。。。。。。。融合金属添加剂制造中的11个过程结构关系。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 Michael Kirka,橡树岭国家实验室缺陷结构。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16热签名。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17个标准结构。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17个位点特定的微观结构控制。。。。。。。。。。。。。。。。。。19其他因素影响结构。。。。。。。。。。。。。。。。。。。金属添加剂制造中的20种结构 - 核关系。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>23 Joy Sackeck,科罗拉多州矿业学校静态特性。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 23疲劳特性。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 24测试栏属性适用于组件性能。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 26与传统制造相比。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>23 Joy Sackeck,科罗拉多州矿业学校静态特性。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23疲劳特性。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24测试栏属性适用于组件性能。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>26与传统制造相比。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。金属添加剂制造中的26个过程缺陷。。。。。。。。。。。。30 Scott M. Thompson,堪萨斯州立大学Nathan B. Crane,Brigham Young University Laser粉末床融合。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 30激光定向 - 能源沉积。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 36粘合剂喷射。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 41过程优化。 。 。 。 。 。 。30 Scott M. Thompson,堪萨斯州立大学Nathan B. Crane,Brigham Young University Laser粉末床融合。。。。。。。。。。。。。。。。。。。。。。。。。30激光定向 - 能源沉积。。。。。。。。。。。。。。。。。。。36粘合剂喷射。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。41过程优化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53 Michael,Michael Syrka和Vincent Paquit,实验室过程优化。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 53种方法。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 53算法。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 55方法库存。 。 。 。53 Michael,Michael Syrka和Vincent Paquit,实验室过程优化。。。。。。。。。。。。。。。。。。53种方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53算法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。55方法库存。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。56闭环反馈控制。。。。。。。。。。。。。。。。。。。。。57数据驱动的优化。。。。。。。。。。。。。。。。。。。。。。。。。57添加剂制造中的材料建模。。。。。。。。。。。。。。。60 Ashley D. Spear,犹他大学微观结构建模。。。。。。。。。。。。。。。。。。。。。。。。。。60个盲目建模挑战。。。。。。。。。。。。。。。。。。。。。。。。64个物理驱动与数据驱动的模型。。。。。。。。。。。。。64个用于金属添加剂制造的零件尺度工艺建模。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。67 Kyle L. Johnson,Dan Moser,Theron M. Rodgers和Michael E. Stender,Sandia National Laboratories热建模。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。67 Kyle L. Johnson,Dan Moser,Theron M. Rodgers和Michael E. Stender,Sandia National Laboratories热建模。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。67固体力学模拟 - 放置应力和失真。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。68微结构模拟。。。。。。。。。。。。。。。。。。。。。。。。。70分析。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。72
