摘要:大型复合结构,例如在风能应用中使用的结构,依赖于热量的大规模聚合在令人印象深刻的大规模上。为了实现这一目标,传统的热固性聚合需要升高温度(> 100°C)和延长的治疗持续时间(> 5 h),以进行完全转换,因此需要使用超大烤箱或加热的模具。反过来,这些要求导致能源密集型聚合,从而产生了高生产成本和流程排放。在这项研究中,我们开发了可以在室温下通过变换的“化学加热”概念在室温下启动的热固性聚合,其中使用次级反应的放热能量来促进一级热代理聚合的加热。通过利用氧化还原引起的甲基丙烯酸甲酯自由基聚合作为放热化学能的来源,我们可以达到峰值反应温度> 140°C,以启动环氧 - 酸性热体的聚合,而无需外部加热。此外,通过采用特洛伊甲基丙烯酸甲酯单体在甲基丙烯酸酯和环氧树脂 - 酸酐结构域之间诱导混合,我们实现了与竞争性热力学特性和可调性的均质混合聚合物材料的合成。在此,我们为我们的创新化学加热方法建立了概念概念,并主张其工业整合,以更广泛地对风叶片和大型复合零件进行更节能和简化的制造。关键词:能源效率,制造,复合合成,热固性,双重治疗,化学加热,可回收划分■简介
在 2021 年临时战略中,EGLE 使用 150 微克/千克 (μg/kg) 的全氟辛烷磺酸 (PFOS) 作为生物固体被视为受工业影响的阈值(有关更多信息,请参阅 2021 年临时战略文件)。EGLE 最初在 2017 年使用此阈值来禁止将六个 WWTP 的生物固体用于土地。下表 1 显示了 2017 年和 2018 年六个 WWTP 的生物固体浓度,以及 2021 年同一设施的相应浓度。在 2021 年提交生物固体数据的 162 家设施中,只有一家 WWTP 的生物固体中 PFOS 浓度超过 150 μg/kg。该污水处理厂是 2018 年被确定为含有受工业影响的生物固体的六个污水处理厂之一。通过实施 IPP PFAS 计划要求的源头削减措施,该污水处理厂已于 2021 年初成功将其生物固体中的 PFOS 浓度降低至 74 μg/kg。然而,在 2021 年秋季,该处理厂再次暴露于 PFAS 源,浓度增加至 180 µg/kg。通过额外的源头削减措施,源头已得到控制,目前正在对受影响的生物固体进行替代处置。
碳定价一直是能源社区与欧盟(EU)之间气候政策对话的反复主题,因为碳定价已被证明在实现有意义的温室气体(GHG)在欧盟中的减少以及确保水平竞争环境方面发挥了关键作用,随着能源市场的越来越多。有必要为能源社区提出碳定价机制,这是出于三个最明显的原因而迫切的。首先,CP中生产的所有电力的几乎一半仍然来自燃烧固体化石燃料的旧且效率低下的热电厂,即褐煤和煤炭,尽管成本不断增加,产生充足性问题,空气质量恶化和公共卫生影响。第二,由于失真的政策掩盖了碳和障碍竞争的真实成本以及向低碳电力市场的过渡,因此发射固体的一代人人为地廉价。第三,CPS的基于固体的电力正在泄漏到欧盟,破坏了欧洲的气候政策,并激励了固体的使用,即 煤炭和褐煤,在能源界。第三,CPS的基于固体的电力正在泄漏到欧盟,破坏了欧洲的气候政策,并激励了固体的使用,即煤炭和褐煤,在能源界。
热力学与相变:热力学中的热和功的概念、热力学系统、热力学第零定律。温度概念、第一定律的微分形式、第二定律的陈述、熵的概念、焓。晶体的热力学函数和关系。相变和多相平衡。[10] 电子能带理论:能带理论、固体的经典自由电子理论、固体的索末菲量子自由电子理论、周期势的布洛赫波函数、克罗尼希-佩尼模型和能带。费米能量和费米面、电子的有效质量、布里渊区和倒易晶格。[10] 固体的电子特性:磁场下的传输方程、回旋共振、磁场下的能级和态密度。朗道抗磁性、自旋顺磁性、德哈斯范阿尔芬效应。磁阻、经典和量子霍尔效应。 [10] 教科书和/或参考资料
结果:在 CRISPR 2 筛选中测试的 1200 多种组合中,Regnase-1/SOCS1 组合位居双编辑组合之首,与对照组相比,该组合增强了 T 细胞向肿瘤的浸润 >3500 倍。在检查点治疗难治性 B16F10 肺转移模型中进行的研究表明,Regnase-1/SOCS1 双编辑的 PMEL-TCR-Tg-T 细胞为对照组带来了显著的生存优势,显著延长了动物的中位生存期,从 21 天延长至 53 天。此外,从 B16-Ova 肿瘤中分离和扩增的 Regnase-1+SOCS1 编辑的小鼠 TIL 在重新输注到宿主体内后对肿瘤产生了完全控制,表明这种编辑组合可以使肿瘤经历的 TIL 恢复活力。为了将这些见解应用于治疗用途,我们发现了 KSQ-004,这是一种人类 Regnase-1/SOCS1 双编辑 CRISPR/Cas9 工程化 TIL (eTIL)。我们开发了从黑色素瘤和 NSCLC 肿瘤样本中制造 KSQ-004 的方法,eTIL 表现出与未编辑对照 TIL 相当的强劲扩增和活力,两个靶标均被敲除 90% 以上。重要的是,KSQ-004 在自体肿瘤刺激下产生了升高的 IFNɣ,并且在体外对肿瘤球体发挥了更大的控制作用。
施用生物固体可以提高土壤肥力和作物产量,但也伴随着重金属和抗生素引入的风险。在重金属污染环境下,利用丛枝菌根真菌 (AMF) 是一种有效的策略,可以增强土壤微生物群落稳定性和植物对重金属的耐受性,并减少抗生素抗性基因 (ARG) 的传播。本研究通过盆栽试验探究了接种 AMF 对土壤和植物重金属含量以及土壤微生物群落的影响。结果表明,接种 AMF 显著提高了植物生物量,并降低了土壤和植物重金属含量。虽然接种 AMF 不会改变细菌和真菌群落的组成,但在较高的生物固体浓度下,它增加了细菌的多样性。值得注意的是,接种 AMF 增强了微生物网络的复杂性,并增加了关键类群的丰度。此外,在接种 AMF 的土壤中,一些对重金属具有高抗性的有益微生物得到了富集。宏基因组分析显示,与未接种AMF的土壤相比,接种AMF的土壤中移动遗传元件(MGE)基因IS91减少,重金属抗性基因增加。MGE介导的耐药基因(ARG)扩散减少的可能性是本研究的主要发现之一。需要注意的是,本研究还检测到接种AMF的高生物固体改良土壤中少数耐药基因的富集。总体而言,接种AMF可能是一种有效的农业策略,可以减轻与生物固体、重金属和抗生素耐药性相关的环境风险,从而促进可持续的土壤管理和健康。