Boyd 定制生产了 3M™ 的各种压敏胶,这些胶无需固化时间即可高效地将电池单元粘合在一起,并增强电动汽车电池组组件的结构完整性。阻燃和绝缘胶带具有即时粘合强度,并且在制造环境中比液体胶粘剂更易于使用。
技术公告 配制酸酐固化环氧体系 简介 Dixie Chemical Company 生产一系列非常适合固化环氧树脂的脂环族酸酐。 这些酸酐包括: • 四氢邻苯二甲酸酐 (THPA) • 六氢邻苯二甲酸酐 (HHPA) • 甲基四氢邻苯二甲酸酐 (MTHPA) • 甲基六氢邻苯二甲酸酐 (MHHPA) • Nadic® 甲基酸酐 (NMA) • 这些材料的配制混合物 关于每种材料的详细信息,请参见 Dixie Chemical Company 提供的特定产品技术公告。 这些酸酐通常用于固化许多高挑战性应用中的环氧树脂,包括用于高性能航空航天和军事应用的纤维增强复合材料,以及纤维缠绕轴承等机械要求高的应用。 它们还具有出色的电气性能,可用于高压应用以及封装电子元件和电路。固化环氧树脂的性质取决于起始环氧树脂、固化剂、促进剂、固化剂与树脂的比例、固化时间和固化温度以及后固化时间和温度。没有一种配方或一组工艺条件能够产生具有所有特性最佳值的固化树脂。因此,在选择配方之前,必须确定预期最终用途所需的特性。一般而言,树脂交联度越高,热变形温度 (HDT)、硬度和耐化学性就越高,但固化产品的抗冲击性和弯曲强度就越低。以下部分将讨论影响性能的因素。
在二十一世纪,建筑行业正在使用木质素及其化学产品来打造环保建筑,以解决环境问题和全球难题 [4]。沥青替代品、涂料、清漆、树脂、水泥复合材料和聚氨酯泡沫的技术发展都对可持续建筑产生了重大影响。为了评估解决方案和材料对环境的影响并促进建筑行业的可持续发展,生命周期评估非常重要 [5]。该过程中的一个关键变量是木质素和复合材料。精心的材料组成、活化过程中的高碱度、安全隐患、更高的能耗和温室气体排放都是 GPC 制造所必需的 [6]。温度和固化时间对 GPC 生产有重要影响,因此需要针对不同建筑区域设计用户友好的土聚物混凝土技术或规范 [7]。
安装 碳和铝箭杆:使用蘸有变性酒精的棉签清洁箭杆内部非常重要。继续使用新的棉签清洁,直到没有黑色残留物。然后,使用 Bohning 的粘合剂之一安装插入件或尖端(请参阅第 13-14 页的表格了解推荐的粘合剂)。我们强烈推荐 Ferr-L-Tite Cool Flex 用于碳箭杆,因为它可以反转而不会损坏您的箭。务必戴上耐热手套和护目镜。切勿用裸露的皮肤接触热表面或粘合剂。 • 使用 Ferr-L-Tite® 和 Ferr-L-Tite® Cool Flex(热熔粘合剂):用钳子握住插入件/尖端,并在小火上加热。然后用火焰加热粘合剂棒,直到粘合剂变亮(就在熔化之前)。用火焰快速重新加热插入件,然后将粘合剂涂满其周围。将插入件按入箭杆,同时将其旋转一整圈。这可确保粘合剂覆盖嵌件和轴内部的整个表面。根据第 13-14 页的表格留出适当的干燥和固化时间。o 安装嵌件后,用固体涂料涂抹旋入点
新兴添加剂制造技术提供的多功能性(例如,3D打印和按需沉积)使得个性化医学的快速生产能够产生。这些技术的按需定制功能为护理或分布式药物制造和复合应用提供了新的途径。设计原理的质量用于调查狭窄治疗指数(WARFARIN),选择性5-羟色胺再摄取抑制剂(Citalopram)和医学对策(DoxyCycline)药物的固体片剂剂型的生产。我们检查了药物片剂赋形剂半固体挤出和点播的活性药物成分(API)墨水的临界材料属性,关键过程参数和关键质量属性。详细的研究优化了API墨水配方 - 特别是相对于片剂半固体赋形剂,赋形剂温度和物理状态(即固体vs液体)和固化时间 - 允许API,赋形剂混合和重新分布。个性化药物剂量,调整剂量和锥形方案是制造的,证明了准确的API数量和所需的生产内容均匀性,如
摘要:空心微针旨在执行皮内医学物质的递送或液体提取,聚合物通过注射成型作为质量生产的成本效益材料。但是,现有研究缺乏对皮肤穿透测试的可加工性和性能的不同聚合物的比较分析。这项研究通过评估五种生物相容性热塑性材料制造的空心微对材料来解决这一差距:聚碳酸酯(PC),聚丁烯二苯甲酸酯(PBT),多酰胺酸(PLA),多酰胺12(PA12)和玻璃纤维增强型多酰胺多酰胺(PARAMANEMAMEMIMANE)(PARA)。在热塑性塑料中发现了复制保真度的显着差异,并且计算出更高的固化时间,从而导致由于填料阶段的扩展可变形性而产生了更好的复制保真度。PBT微针在脱再多造成的过程中变形,并被排除在穿透测试之外。在小猪耳朵上的穿透试验显示,由于针的变形,PA12和PLA微针的穿透性没有。para表现出一致的穿透结果,而PC表现出不一致的穿透行为,一些针的成功完全穿透了,而另一些针头变形。高机械性能对于实现一致和成功的穿透至关重要。
通过人工智能技术估算混凝土特性已被证明是建筑领域节省时间和成本的有效方法。超高性能混凝土 (UHPC) 的制造基于多种成分的组合,从而产生一种非常复杂的新鲜和硬化形式的复合材料。成分越多,可能的组合、特性和相对混合配比就越多,导致难以预测 UHPC 行为。本研究的主要目的是开发机器学习 (ML) 模型来预测 UHPC 的流动性和抗压强度。因此,当前的研究采用了复杂而有效的人工智能方法。为此,应用了一个名为决策树 (DT) 的单独 ML 模型和名为引导聚合 (BA) 和梯度提升 (GB) 的集成 ML 算法。还采用了诸如判定系数 (R2)、均方根误差 (RMSE) 和平均绝对误差 (MAE) 之类的统计分析来评估算法的性能。结论是,GB 方法可以适当地预测 UHPC 的流动性和抗压强度。DT 技术的 R 2 值较高,分别为抗压和流动性的 0.94 和 0.95,误差值较小,与其他 R 2 值较低的算法相比具有更高的精度。SHAP 分析表明,石灰石粉含量和固化时间分别对 UHPC 的流动性和抗压强度具有最高的 SHAP 值。本研究成果将有利于建筑行业的学者快速有效地确定 UHPC 的流动性和抗压强度。
预处理 粘合接头的强度和耐久性取决于对要粘合的表面进行适当的处理。至少,应使用良好的脱脂剂(如丙酮、异丙醇(用于塑料)或其他专有脱脂剂)清洁接头表面,以去除所有油、油脂和污垢痕迹。切勿使用低浓度酒精、汽油或油漆稀释剂。通过机械研磨或化学蚀刻(“酸洗”)脱脂表面可获得最坚固、最耐用的接头。研磨后应进行第二次脱脂处理。 Araldite ® 2015 结构胶粘剂以带混合器的筒装形式提供,可借助 Huntsman Advanced Materials 推荐的工具作为即用型胶粘剂涂抹。 胶粘剂的应用 可以手动或机器人将树脂/硬化剂混合物涂抹在预处理的干燥接头表面上。 Huntsman 的技术支持团队可协助用户选择合适的应用方法,并推荐各种制造和维修粘合剂分配设备的知名公司。厚度为 0.002 至 0.004 英寸(0.05 至 0.10 毫米)的粘合剂层通常会为接头提供最大的搭接剪切强度。Huntsman 强调,适当的粘合剂接头设计对于持久粘合也至关重要。一旦涂抹粘合剂,就应将接头组件组装并固定在固定位置。有关表面准备和预处理、粘合剂接头设计和双注射器分配系统的更多详细说明,请访问 www.araldite2000plus.com。设备维护在粘合剂残留物固化之前,应使用热水和肥皂清洁所有工具。清除固化残留物是一项困难且耗时的操作。如果使用丙酮等溶剂进行清洁,操作员应采取适当的预防措施,此外,还应避免皮肤和眼睛接触。达到最小剪切强度的固化时间
杂质(Cl-)ppm < 1.5 描述 陶氏有机硅微电子胶粘剂产品旨在满足微电子和光电子封装行业的关键标准,包括高纯度、防潮性以及热稳定性和电稳定性。陶氏有机硅微电子胶粘剂产品具有出色的应力消除和高温稳定性,可出色地无需底漆粘附于各种基材和部件。这些产品非常适合需要低模量材料的微电子设备、无铅焊料回流温度(260°C)或其他高可靠性应用。这些材料具有湿式分配和预固化薄膜产品形式,可满足设备封装应用的广泛需求。陶氏有机硅微电子胶粘剂产品以方便的单组分材料形式提供,具有针对导电性、电绝缘性或导热性开发的特定配方,所有这些都通过热固化而不会产生副产品。表面准备 所有表面都应使用 DOWSIL™ OS 液体、石脑油、矿物油或甲基乙基酮 (MEK) 等溶剂彻底清洁和/或除油。建议尽可能进行轻微表面打磨,因为这样可以促进良好的清洁并增加粘合表面积。最后用丙酮或 IPA 擦拭表面也有助于去除其他清洁方法可能留下的残留物。在某些表面上,不同的清洁技术会比其他技术产生更好的效果。用户应确定最适合其应用的技术。 基材测试 由于基材类型多样且基材表面条件不同,因此无法对粘合强度和粘合强度做出一般性陈述。为了确保在特定基材上的最大粘合强度,需要使粘合剂在搭接剪切中 100% 内聚破坏或具有类似的粘合强度。这可确保粘合剂与所考虑的基材兼容。此外,此测试可用于确定最短固化时间或检测表面污染物(如脱模剂、油、油脂和氧化膜)的存在。
弗劳恩霍夫制造技术与先进材料研究所 (IFAM) 的研究人员开发出一种新型聚合物补片,它可以显著加速和简化以前费力、昂贵且耗时的受损轻型飞机部件修复过程。将这种可热成型、可回收的修补片压在受损区域,仅需 30 分钟即可完全固化。这种创新的纤维增强塑料用途广泛,可用于从航空到骨科等不同行业。修复轻型纤维复合材料部件(如用于飞机机翼、机身段、尾翼表面和舱门的部件)是一个费时、昂贵的过程,需要多个工作步骤。受损区域通常使用复杂的湿层压工艺或在表面应用纤维增强聚合物 (FRP) 或铝结构(称为双层)来修复。然而,这些方法需要较长的固化时间并需要额外的粘合剂。弗劳恩霍夫 IFAM 的研究人员现已开发出一种由动态聚合物网络(业内称为 vitrimers)制成的修补片,可将之前漫长而费力的修复过程缩短至 30 分钟。这种创新材料基于苯并恶嗪,这是一种新型热固性材料,也称为热固性材料,其真正特别之处在于,聚合塑料不会熔化,也不会像湿法层压中使用的传统树脂系统那样表现出其他行为。聚合物的动态网络过程使局部加热材料成为可能。完全固化的修补片在加热状态下可适应修复部位。在室温下,聚合物具有热固性,因此修补片不粘,储存时稳定。这节省了能源,因为修补片可以在室温下储存,不需要冷藏,从而降低了储存成本。修补片使用压力和热诱导交换反应应用于需要修复的轻质部件。它能够快速修复,30 分钟内完全固化。无需使用反应性危险材料,而传统树脂系统则必须如此。玻璃体特性使得可以在需要时移除补片,而不会留下任何残留物。“我们的无粘合剂、储存稳定的纤维增强补片可以直接修复受损的复合材料和混合结构。由于聚合物本质上是一种玻璃体,因此补片在储存过程中的表现类似于传统的热固性复合材料,但它也