容器式 NAS ® 电池由六个模块组成,每个模块有 192 个电池。NAS ® 电池单元由钠作为负极,硫作为正极组成。β-氧化铝陶瓷管用作电解质,只允许钠离子通过。放电时,钠被氧化,硫被还原形成多硫化物 (Na 2 SX)。充电步骤再次回收金属钠和元素硫。
▪ 33kW / 242kWh (最大 42kW*) ▪ 1.2kWh / 5.3kg ▪ ~2V ▪ C-rate 1/6 (0.17) ▪ 最大t范围: 290°C – 360°C ▪ 无记忆效应 ▪ 使用寿命: 7300 次循环或 20 年
5.0 NO 控制技术 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11 5.1.5 湿式控制对 CO 和 HC 排放的影响 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-36 5.2.2 贫燃预混燃烧器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-73 5.4 与 SCR 结合使用的控制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-87 5.8 催化燃烧 . ...
本文档旨在指导读者了解与固定式海上风力涡轮机支撑结构相关的不同分析,以及 Sesam 和 Bladed 如何支持这些结构。Sesam 可以执行适用于海上风力涡轮机 (OWT) 支撑结构行业的多种不同分析,这些分析基于海上石油和天然气行业多年来经过验证的技术,并根据 IEC61400-3-1、DNV 标准 DNV-ST-0126(风力涡轮机支撑结构)和 DNV-ST-0437(风力涡轮机载荷和场地条件)等国际标准扩展了针对海上风电行业的新功能,以及 DNV 建议实践 DNV-RP-C203(海上钢结构疲劳设计)和 DNV-RP-0585(风力发电厂抗震设计)。在初步设计中,Sesam 可用于固定式海上风力涡轮机结构的建模和各种类型的分析。支撑结构可在 3D 建模环境中建模。建模过程中的优势包括参考点建模和参数化脚本,从而形成一个强大的界面,可以快速高效地对多个概念设计进行权衡研究。概念设计阶段可以执行的一些分析包括固有频率分析(特征值分析)、极限状态 (ULS) 和正常使用极限状态 (SLS) 分析(包括构件和接头规范检查),以及使用损伤等效载荷或波浪载荷的疲劳极限状态 (FLS) 分析。在这些静态分析中可以执行非线性桩土分析,而动态分析中要使用的等效线性化桩土弹簧矩阵可以由软件自动获得。在详细设计阶段,Sesam 可用于固定式海上风力涡轮机结构,从定制工作台 Sesam Wind Manager 执行时域分析。Sesam Wind Manager 可以在时域中执行疲劳分析 (FLS) 以及极限强度分析 (ULS) 和地震分析。这些分析可以通过两种方式执行,要么使用超元素方法,要么使用完全集成的方法:
• 充电/放电检测。 • 故障诊断和保护系统控制。 • 电压和电流测量, • SOC和SOH计算, • 与BAU的数据通信;
第 1 节 总则 ·· ... ·· ... ·· ... ·········································································· 6
第 1 节 总则 ·· ... ·· ... ·· ... ·········································································· 6
适用的自愿标准是 UL 1042 电动踢脚板加热设备 和 UL 2021 固定和专用电动室内加热器 。为实现项目目标,完成了以下活动:• 根据新的调查指南进行现场调查,在两个供暖季节开展了 108 项范围内的调查。• 样品回收工作从 23 项调查中收集并分析了 28 个现场返回的事故加热器。• 一份经济报告确定了加热器的类型、分布和群体。• 合规办公室之前的调查研究提供了重要的现场事故数据和专家分析。• 人为因素司评估了安装人员和用户的说明。• 对多种加热器进行的实验室实验表征了各种条件下的性能和潜在危险。• 故障模式和影响分析将潜在故障与 UL 2021 检测这些故障的能力进行了比较。 • 电气连接领域的独立专家对固定位置电加热器中电压接连接器的质量和效果进行了评估。
真正的能源供应安全是我们加速向可持续能源模式转型的最终和决定性原因(好像气候紧急情况、化石燃料枯竭和污染汽车引发的疾病还不够)。可再生能源在我们的能源结构中的份额必须不断增长,无论是集中式还是分布式发电。只有同时采取一致行动进行能源储存以补偿太阳能和风能的间歇性,这种增长才有可能。然而,直到上个十年,能源储存一直是全球能源循环中被忽视的一部分。世纪之交标志着锂离子电池(LIB)作为消费电子产品的终极供电技术的应用。但现在,我们正目睹能源储存种类的寒武纪大爆发,因为当今的需求范围从电子设备中微型一劳永逸的超级电容器,到电动汽车电池、可再生能源储存以及用于电网平衡的超级电容器和电池。因此,随着我们的需求变得更加多样化,我们对储存能源的依赖也随之增加,我们需要做出创造性的努力来正确