本论文的总体目标是充分利用敏捷固定翼无人机的所有机动能力,实现自主飞行。主要主题是机动设计、控制和运动规划。论文首先讨论了一些初步主题:飞机动力学模型、反馈控制器和优化框架,这些都将在论文的后续部分中使用。接下来,进行调查以评估侧滑和螺旋桨电流在固定翼无人机极限机动中的重要性。如果在设计机动时没有考虑这两种现象中的任何一种,我们就会确定性能损失的成本。
本论文的总体目标是利用敏捷固定翼无人机的所有机动能力来实现自主飞行。主要主题是机动设计、控制和运动规划。论文首先讨论了初步主题:动态飞行器模型、反馈控制器和优化框架,所有这些都将在论文的以下部分中使用。接下来,我们进行了一项调查,以评估横向滑移和螺旋桨电流在固定翼无人机的极限机动中的重要性。如果在设计机动时未考虑这两种现象中的一种或另一种,我们会根据性能损失来确定成本。
回想我在这篇论文的发展过程中所走过的路,我知道有很多我觉得我应该感谢的人,他们一直帮助和支持我。我首先想到的是 Marco Lovera 教授,在我的代尔夫特之旅中,他从不缺乏专业和道义上的支持,让我完成了这一挑战。我在这个空间里说的任何话都不足以表达对马蒂亚的感谢。如果没有你们的帮助、固执和慷慨,我永远不会成功,你们是最黑暗时刻的灯塔。衷心感谢西蒙娜·巴尔迪博士给我机会演讲一个我如此珍视的话题,这让我有机会在新的大学环境中成长很多。显然,拥抱我一直可以信赖的所有朋友,并与他们分享了我的部分冒险经历:从我的副驾驶巴萨克,到戴维德,再到忍受了我几个月的拉福,乔治, Ludo、Michele、Gianlu、Dani,你们的存在一直鼓励我尽力而为。感谢Marra (: ¿),在我最曲折的时刻,他总是给我带来欢乐和热情。非常感谢在快乐和困难时刻帮助我的人,最重要的是给予我最后的推动;谢谢基亚拉。必须对我的父母和家人说一些特别的话。有你们在我身后就是一个
在过去十年中,美国和世界各地的无人机个人拥有量呈爆炸式增长。集成电路、传感器和嵌入式微控制器的尺寸和成本迅速下降,导致业余爱好者社区蓬勃发展,他们设计飞行控制器的复杂程度接近政府和军事应用的水平。典型的飞行辅助控制器集成了来自用户控制系统和惯性测量单元 (IMU) 的数据,以保持飞行器水平和航向。旋翼和固定翼系统的飞行控制技术主要源自无线电控制 (RC) 业余行业,通常由社区构建和开源。虽然这导致快速开发和易于修改,但质量通常会受到影响。由于社区不是专业人士社区,最佳编码实践经常被遗忘,导致意外故障。这种飞行控制系统不适合集成到美国领空,因为它们容易发生故障,并且无法缓解飞行控制面的故障。固定翼系统也可以在没有机载飞行控制器或自动驾驶仪的情况下进行控制,只需一个简单的摄像头下行链路和直接控制面控制即可满足大多数第一人称视频 (FPV) 需求。这给此类控制器的市场留下了一个空白,所有产品都缺乏冗余和故障缓解等专业功能。我们的项目
Remo-M 是一种广泛使用的无人机系统,专为机动性、快速部署和航空测绘应用而设计。Remo-M 具有独一无二的深失速垂直着陆功能,仅需要半径 15 米的着陆区域。用户受益于飞行规划软件的简单性和直观的用户界面。倾斜图像与滚转轴万向架一起用于智能 3D 建模。Remo-M 是同类产品中最先进的固定翼无人机,可提供更高的效率、飞行任务灵活性和简单性。
13.摘要(最多 200 个字)已经开发出一种全面的模型拼接模拟架构,它允许基于离散点线性模型和配平数据集合进行连续、完整的飞行包线模拟。模型拼接模拟架构适用于任何可通过状态方程轻松建模并可获得测试数据的飞机配置。特定飞行条件下的单个线性模型和配平数据与非线性元素相结合,以生成连续、准非线性模拟模型。模型拼接架构中的外推方法允许精确模拟非标称飞机负载配置,包括重量、惯性和重心的变化以及高度的变化,这些变化共同将全包线模拟所需的点模型数量降至最低。本文将模型拼接仿真架构应用于 CJ1 商务喷气机模型和 UH-60 通用直升机模型。对于固定翼和旋翼机应用,发现使用 8 个离散点线性模型(两个高度各 4 个点模型)加上额外的调整数据配置拼接仿真模型可以在整个空速和高度范围内进行精确模拟。本文介绍了从飞行识别点模型开发拼接模型的飞行测试对固定翼和旋翼机应用的影响。
以固定翼飞机为例,开发了一种基于矢量场输入的状态相关 LQR 控制器,以及从误差状态和李群理论得出的 EKF,以估计飞机状态和惯性风速。通过蒙特卡罗模拟证明了这种控制器/估计器组合的稳健性。接下来,通过使用阻力系数、部分更新和关键帧重置增强滤波器,提高了多旋翼飞行器最先进的 EKF 的准确性、稳健性和一致性。蒙特卡罗模拟证明了增强滤波器的准确性和一致性得到了提高。最后,推导出使用图像坐标的视觉惯性 EKF,以及用于估计精确视觉惯性估计算法所需变换的离线校准工具。通过数值模拟还表明基于图像的 EKF 和校准器在各种条件下都具有稳健性。
摘要 — 考虑到机械系统动力学分析的多体方法,本文旨在构建一个简单的计算机模型来描述执行纵向运动的固定翼飞机的动力学。为此,分析了一种简化的飞行器模型,该模型没有控制面,具有轴向推力,并且空气动力学作用有限。然后使用 Digital DATCOM 软件对气动系数进行建模,同时将升降舵也视为控制面。首先,在多体动力学的背景下研究飞机动力学。然后,分析了被视为本文示例的案例研究,即 Cessna 172 Skyhawk 飞机。通过对外部施加的作用和气动系数进行建模,随后分析了飞行起飞阶段背后的基本力学。在本文中,使用拉格朗日公式方法驱动描述示例动态行为的运动方程。然后在 MATLAB 环境中构建的计算机代码中实现了示例的动态模型。通过这样做,该过程的目标是尽可能准确地开发 Cessna 172 Skyhawk 飞机的虚拟模型。如本文使用数值模拟所示,本文分析的案例研究的计算机模型能够模拟
从研究船上部署和回收自主或遥控平台已成为显著扩展研究船队能力和范围的一种方式。本文介绍了从船上发射和回收的波音 Insitu ScanEagle 无人机 (UAV) 的使用情况。在 2012 年 10 月的中太平洋赤道混合 (EquatorMix) 实验和 2013 年 7 月的弗吉尼亚海岸三叉戟勇士实验期间,无人机被用来表征海洋大气边界层 (MABL) 的结构和动态,并测量海洋表面过程。无人机测量结果包括大气动量和辐射、感热和潜热通量,并辅以船载仪器的测量结果,包括前桅 MABL 涡流协方差系统、激光雷达高度计和数字化 X 波段雷达系统。在 EquatorMix 期间,无人机测量结果揭示了船舶测量未采样的纵向大气滚动结构,这对热量和动量的垂直通量有重大影响。使用天底无人机激光雷达,可以观察到内部波的表面特征,与船载 X 波段雷达、水文多普勒声纳系统和理论模型的测量结果一致且连贯。在三叉戟勇士实验中,仪器化的无人机用于演示将无人机的气象数据实时同化到区域耦合海洋-大气模型中。仪器化的无人机在偏远海洋位置的大气和海洋测量中提供了前所未有的时空分辨率,展示了这些平台扩展海洋和大气研究舰队范围和能力的能力。
2.1 燃气飞机更换 _______________________________________________________________4 2.1.1 分析 ___________________________________________________________________________ 5 2.1.2 建议 ________________________________________________________________ 6 2.2 飞行员和工程师配备 _______________________________________________________________ 8 2.2.1 分析 _____________________________________________________________________________ 8 2.2.2 建议 ________________________________________________________________ 9 2.2 PAL 喷气式飞机的使用 __________________________________________________________________________________ 9 2.2.1 分析 ____________________________________________________________________________ 10 2.2.2 建议 ________________________________________________________________ 13