摘要:我们提出了一个具有连贯状态的一维双向连续变量量子键分布协议,在该协议中,发件人调节了相干状态的单个正交,而不是两个二次化,以简化双向系统的结构。安全分析是通过一般攻击策略(称为两模式攻击)进行的,这有助于减少分析中的限制。在所有可访问的两模式攻击下以固定距离的距离进行了协议的性能。此外,从中获得了两种典型的两模式攻击策略,这是一模式攻击策略和最佳的两模式攻击策略。之间,单模式攻击是两种模式攻击的最简单形式,而最佳的两模式攻击是最复杂的攻击。模拟显示,尽管简化了系统,但具有一维调制的双向协议的性能仍然可与具有高斯调制的对应物相当,即使在Eve的能力最大化时,甚至针对最佳的两模式攻击也是如此。因此,提出的协议简化了双向系统,同时保证其性能在一定程度上。尤其是在传输距离短且高度噪声的实用系统中,该协议具有良好的应用前景。
方法 受试者:C57bl/6雄性小鼠,其母鼠产后可使用跑轮(跑步者;n= 9)或使用标准笼子(久坐;n= 10)。 CUS 范式:将受试者分为对照组(跑步者,n= 4;久坐组,n= 5)和实验组(跑步者,n= 5;久坐组,n= 5),接受为期 21 天的 CUS 范式。 CUS 之后,对小鼠进行灌注,并对大脑进行 Golgi 染色 5,以研究背海马 CA3 区锥体神经元内的树突树枝状化。 重建:使用基于计算机的显微镜系统来描绘和重建神经元的轴突、树突、胞体和其他亚细胞成分,从而创建神经元的数字几何模型(n=152)。仅选择切片中间三分之一处具有完全染色和完整树突状体的相对分离的神经元进行分析。分析:使用 Neurolucida explorer 进行 Sholl 分析,该分析揭示了同心球中距胞体固定距离处出现的树突交叉点数量和树突长度。
蚱hopper问题 - Olga Goulko摘要:蚱hopper在一个区域的平面草坪上随机地降落。然后,它在随机方向上使固定距离d的跳转一次。草坪应该是什么形状,以最大程度地增加蚱hopper在跳跃后留在草坪上的机会?这个很容易说明但很难解决数学问题,这与量子信息和统计物理学具有有趣的联系。球体上的广义版本可以提供对新的贝尔不平等现象的见解。一个离散版本可以通过自旋系统建模,代表具有固定范围交互的新类别统计模型,其中范围D可以很大。我会证明,也许令人惊讶的是,没有D> 0的圆盘形草坪是最佳的。如果跳跃距离小于单位盘的半径,则最佳草坪类似于齿轮,在较大d时向更复杂,断开的形状过渡。可以使用平行的回火蒙特卡洛(Monte Carlo)进行离散自旋模型,可以鉴定出具有不同对称特性的几类最佳草坪形状。
危险 1.1 范围 L100 气泡管液位系统由完全独立的仪器组成,只需连接到空气或气体供应、浸管和电源即可提供精确的液位指示。由于只有固定浸管和吹扫气体与液体接触,因此这些系统非常适合涉及危险场所或开放式储罐中的严格液体的应用,包括高腐蚀性、粘稠性、热(熔融金属)、爆炸性、泥浆类型或食品。此外,L100 的电子输出与几乎所有模拟仪器兼容,包括本地和远程指示器、计算机、数据记录器、记录器和控制器。1.2 功能描述 在 L100 气泡管液位系统中,通过测量将气体压入液面下方某一点所需的压力来测量通风容器中的液位。这种方法允许在液体不进入管道或仪器的情况下进行液位测量。压力调节器和恒流调节器相结合,为浸入罐中固定距离的气泡管建立一致的清洁空气或气体流。流量被调节到非常低的水平,在气泡管末端建立压力。此后,通过气泡通过液体逸出,压力保持在此值。测量液位的变化导致气体压力增加或下降。然后此时使用集成式 P200 测量背压并传输与液位或体积成比例的电信号。L100 气泡管液位系统中的高品质、行业领先的 P/I 变送器为用户提供了成熟且公认的电子接口。由于全固态 P200 变送器通常能够达到 0.10% 的量程精度,因此整个 L100 系统可以保持 0.25% 的精度。此外,由于 NEMA 4 设计以及 P200 的 FM 和 CSA 防爆和 FM 和 CSA 本质安全认证,L100 可用于室内或室外危险区域。L100 提供多种功能,可简化气泡管技术在液位中的应用。过压释放和回流止回阀用于保护 P200,并作为每个系统的标准设备提供,以及用于读取清除流量的流量计。包括通过高压空气手动吹扫气泡管的装置,以允许用户清除气泡管中的任何障碍物。图 1 显示了 L100 系统的标示图,图 2 至图 4 给出了该技术的功能表示。请注意图 5 中管道底部的小 V 形槽,它允许空气以稳定的气流而不是间歇性的大气泡形式流出。L100 系统提供了两种可能的精确测量方法。尽管 L100 提供了非常受控的恒定气流,但以下公式和表格表明,气泡系统和水箱之间的长管道可能会出现明显的压降: P D = (K x A x L) ÷ 1000 其中: P D = 以英寸水柱为单位的压降。K = 与管道有关的系数。参见表格。A = 每小时标准立方英尺的空气流量。L = 管道长度(英尺)。