微电子与超大规模集成电路 * 集成电路与电路 * 电力电子与驱动信号处理与通信 * 控制与自动化电子系统 * 电力系统固态器件 * 计算机技术 * 仪器仪表技术 * 人工智能与机器学习 * * 非电子工程核心
尽管固态器件不断带来挑战,但微波管在高功率、高频领域仍处于领先地位,这是因为微波管在热管理、可靠性、寿命和成本方面具有固有能力(如果以相同的功率水平估计)、应用频率范围内的效率以及 EMI 和 EMC 考虑因素也是如此。微波管的应用范围很广,例如通信、雷达、电子战、使用高功率微波 (HPM) 的定向能武器 (DEW)、工业烤箱、烹饪、材料烧结、高温、用于能源研究的等离子加热、大气科学、卫星通信等 [1]-[4]。现在,利用微波管产生的中高功率毫米波,可以构建具有更均匀微观结构的细晶粒陶瓷,从而开发更坚固、更不易碎的陶瓷和新型陶瓷复合材料,利用材料吸收率随频率增加的特性,可以实现体积加热和选择性加热,从而实现更快更好的陶瓷烧结[5]。
- 凭借论文“基于氧化铪的电阻式随机存取存储器的紧凑模型”,荣获 2013 年 5 月 29-31 日在意大利帕维亚举行的 ICICDT(国际集成电路设计与技术会议)“最佳学生论文奖”。 - 分别于 2014 年 1 月 13 日和 2017 年 12 月 15 日获得摩德纳雷焦艾米利亚大学校长教授颁发的“杰出国际研究员证书”。 - 凭借在 2015 年最佳博士论文中获得的“2015 年度最佳博士论文奖”。 - 凭借论文“通过随机电报噪声特性探测高 k / 金属栅极鳍式场效应晶体管 (FinFET) 应力作用下的缺陷产生”荣获 2016 年 9 月 12 日至 15 日在瑞士洛桑举行的 2016 年 ESSDERC (第 46 届欧洲固态器件研究会议)“最佳论文奖”。 - 凭借论文“边界陷阱对 InGaAs 量子阱 MOSFET 中磁滞和迁移率测量的影响”荣获 2016 年意大利电子学会 (Gruppo Italiano di Elettronica)“最佳口头报告奖”。 - 凭借论文“SIMPLY:使用 RRAM 紧凑模型设计基于 RRAM 的智能逻辑内存架构”荣获 2019 年 ESSDERC(第 49 届欧洲固态器件研究会议)“最佳论文奖”,2019 年 9 月 23 日至 26 日,波兰卡科夫。 - 凭借论文“二值化神经网络中内存推理的电路可靠性分析”荣获 2020 年 IEEE IIRW(国际综合可靠性研讨会)“最佳学生论文奖”,2020 年 10 月 4 日至 29 日,美国加利福尼亚州 Fallen Leaf Lake。 - 凭借论文“二值化神经网络中内存推理的电路可靠性分析”荣获 AICI(意大利集成电路设计协会)“E. 2010 年至 2012 年期间,卡拉布里亚大学最优秀的工程学研究生获得了“Loizzo 纪念奖”。 - IEEE 学生会员(2012-2014 年)、会员(2015 年至今)。 - IEEE 青年专业人员会员(2015 年至今)。 - IEEE 电子设备协会会员(2018 年)。 - SIE - Società Italiana di Elettronica 会员(2013 年至今)。
ECE 501 高级模拟集成电路 3 ECE 502 高级数字与数据通信 3 500 级选修课 ECE 503 高级数字集成电路 3 ECE 504 电子电路与系统的计算机辅助验证 3 ECE 505 VLSI 混合信号集成电路分析与设计 3 ECE 506 高级 IC 处理与布局 3 ECE 507 高级固态器件 3 ECE 508 高级通信集成电路 3 ECE 509 VLSI 设计:系统方法 3 ECE 510 高级数字信号处理 3 ECE 511 信息理论 3 ECE 512 错误控制编码 3 ECE 513 数字图像处理 3 ECE 514 传感器与 DSP 系统设计 3 ECE 515 微波工程 3 ECE 516 线性代数与微积分 3 600 级选修课课程 ECE 601 量子与光电子学 3 ECE 602 射频集成电路设计 3 ECE 603 纳米级制造 3 ECE 604 纳米电子设备与电路 3 ECE 605 使用 VLSI 进行高速信号与图像处理 3 ECE 606 606 复杂数字系统设计 3 ECE 607 移动通信 3 ECE 608 高速通信网络 3 ECE 609 神经与非线性信息处理 3 ECE 610 高级天线设计 3 ECE 611 高级天线设计 3 ECE 612 数值电磁 3 ECE 613 高级无线通信系统 3 ECE 614 高级光通信系统 3 ECE 615 高级优化技术 3 ECE 616 统计信号处理 3 ECE 617 硅光子学 3
电气工程系 (www.iitk.ac.in/ee/) 提供几乎所有电气工程子学科的硕士、硕士 (R) 和博士课程。领域包括:信息和编码理论;通信、电信和无线网络;点对点网络;数字交换系统;航空电子和导航系统、5G/6G 无线技术;量子计算和通信、分子通信;人工智能和机器学习、数字信号和图像处理;计算机视觉;逆问题和断层扫描;信号与系统理论;控制系统和机器人;网络控制和电动汽车控制;电子和虚拟仪器;模糊逻辑;神经网络及其应用;电力系统经济学;优化;电力市场;电力系统保护;高压电介质和绝缘;高压直流输电和 FACTS、电能质量;智能电网和同步相量;电力电子;电力驱动微电网;微电子学;VLSI 系统设计;模拟和数字电路设计;半导体器件建模与仿真;固态器件;纳米电子学和纳米级器件;有机电子学;柔性电子学;光伏技术;电磁学;射频工程和微波;天线,超材料;MMIC;射频和微波传感器;RFID;微波和毫米波成像;射频能量收集、电磁和断层成像;太赫兹成像和测试;纳米光子学、等离子体学、基于量子点的器件;光电子学;光纤信号处理;非线性光纤;光纤传感器;量子密码学和量子光学;自旋波;光子网络和系统。
毫米波和太赫兹频率的真空电子器件在现代高数据速率和宽带通信系统、高分辨率检测和成像、医学诊断、磁约束核聚变等领域发挥着重要作用。由于电子在真空介质中运动速度快,与现有的其他辐射源(如固态器件)相比,它们具有高功率、高效率以及紧凑性的优势。我们设立“高频真空电子器件”专刊的目的是加强有关这些器件的理论、设计、仿真、工艺和开发的研究信息的交流,促进它们的应用,并吸引年轻的研究人员和工程师进入这个重要领域,这是现代电子科学和信息技术的重要组成部分。真空电子射频功率器件有很多种,包括线束器件、交叉场器件和快波器件。在高达太赫兹的高频范围内,速调管、行波管、波谷振荡管和回旋管因其高功率或宽瞬时或调谐带宽而受到广泛研究。为了在毫米波和太赫兹频率下获得高质量的性能,过去十年中出现了新的技术和工艺,包括使用 MEMS 和 3D 打印的微加工、用于窗口和衰减器的新型金刚石相关材料。同时,人们还研究了新的慢波结构和谐振结构,如超结构、高阶模式操作和片状电子束,用于获得高功率;杂散抑制;并降低制造难度,特别是在高频范围内。阴极、电子枪、I/O 结构、磁聚焦系统和收集器等器件零部件的革命性技术在高频真空电子器件的发展中发挥了关键作用。本期特刊包含 15 篇论文,涵盖了广泛的主题,涉及频率范围高达 340 GHz 的高频真空设备的设计、仿真、制造和测试,以及包括回旋管、TWT 和 EIK 在内的设备,以及波束形成和限制阴极、慢波结构和模式转换器等。高频回旋管是动态核极化核磁共振 (DNP-NMR) 应用的核心设备,可显着提高医疗系统和科学研究中高场 NMR 的灵敏度和分辨率。北京大学论文[1]《330 GHz/500 MHz DNP-NMR应用的线性偏振高纯度高斯光束整形与耦合》提出了用于330 GHz/500 MHz DNP-NMR系统的波纹TE11-HE11模式转换器和三端口定向耦合器的设计与计算。模式转换器的输出模式呈现出高度
核心课程 *EEE5352 - 半导体材料和器件特性 (3) LEC。3. 半导体材料特性电阻率、迁移率、掺杂载流子寿命、器件特性、阈值电压、MOS 器件的界面电荷、薄膜的光学和表面特性。(2025 年秋季,奇数年秋季) *EEE6317 - 功率半导体器件和集成电路 (3) LEC。3. 对现代功率半导体器件和集成电路 (IC) 在电力电子系统中的应用有基本的了解。(每年春季) *EEE6338 - 微电子学高级主题 (3) LEC。3. 涵盖微电子学的高级主题,如半导体器件物理、半导体器件制造和半导体器件建模。(偶尔) *EEE5356C - 固态器件制造 (3) LEC。3. 实验室。 2. 微电子设备的制造、加工技术、离子注入和扩散、设备设计和布局。实验室包括设备加工技术。(每年春季和秋季) *EEL5245 - 电力电子学 (3) LEC。3. 电力电子学原理、功率半导体设备、逆变器拓扑、开关模式和谐振直流-直流转换器、循环转换器、应用。(每年秋季) *EIN5140 - 项目工程 (3) LEC。3. 工程师在项目管理中的作用,重点是项目生命周期、成本、进度和性能控制的定量和定性方法。(每年春季和秋季) *EMA5415 - 电子材料特性原理 (3) LEC。3. 本课程将涵盖材料能带结构和键合、金属、半导体和电介质中的电导和热导的基本概念。将讨论光与物质之间的相互作用,并介绍激子等重要概念。 (偶尔) *EMA6626 - 材料机械行为 (3) LEC。3. 材料机械行为的基本原理;各种材料类别的弹性、塑性、粘弹性、蠕变、断裂和疲劳的高级处理。(每年春季) *ESI5219 - 工程统计学 (3) LEC。3. 离散和连续概率分布、假设检验、回归、非参数统计和方差分析。(每年春季和秋季) *ESI5236 - 可靠性工程 (3) LEC。3. 可靠性理论和建模方法。主题包括:故障数据分析、可维护性、可靠性标准 (DOD)、软件可靠性、设计可靠性和电子系统可靠性。(每年秋季) *EEL5937 - 辐射效应和可靠性 (3) LEC。3. 空间辐射环境及其对电子设备的影响概述,包括电离辐射效应的基本机制和开发测试方法以使设备适合太空操作。将强调总剂量和单事件效应;高剂量率下的瞬态辐射效应
视频:磁性是巨大的基本和技术重要性领域。在原子水平上,磁性起源于电子“自旋”。纳米融合(或基于纳米级的自旋电子学)的领域旨在控制纳米级系统中的旋转,这在过去几十年中导致了数据存储和磁场传感技术的天文学改善,并获得了2007年诺贝尔物理学奖的认可。纳米级固态器件中的旋转也可以充当新兴量子技术的量子位或量子位,例如量子计算和量子传感。由于磁性与旋转之间的基本联系,铁磁体在许多固态自旋装置中起着关键作用。这是因为在费米水平上,状态的电子密度是自旋偏振的,这允许铁磁体充当自旋的电气喷射器和检测器。铁磁体在费米水平的低自旋极化,流浪磁场,串扰和纳米级的热不稳定性方面存在局限性。因此,需要新的物理学和新材料,以将自旋和量子设备技术推向真正的原子极限。出现的新现象,例如手性诱导的自旋选择性或CISS,其中观察到载体自旋与中性的有趣相关性,因此可以在纳米杂交中发挥作用。这种效果可以允许分子尺度,手性控制自旋注射和检测,而无需任何铁磁铁,从而为装置旋转的基本方向打开了一个新的方向。■密钥参考CISS在此重点的账户中发现了在手性分离,识别,检测和不对称催化等不同领域的无数应用,但由于其对未来旋转基因技术的巨大潜力,我们专门回顾了这种影响的旋转器械结果。第一代基于CISS的自旋装置主要使用手性生物有机分子。但是,也已经确定了这些材料的许多实际局限性。因此,我们的讨论围绕着手性复合材料的家族,由于它们能够在单个平台上吸收各种理想的材料特性,因此可以成为CISS的理想平台。在过去的几十年中,有机化学界对这类材料进行了广泛的研究,我们讨论了已确定的各种手性转移机制,这些机制在CISS中起着核心作用。接下来,我们将讨论对其中一些手性复合材料进行的CISS设备研究。重点是给手性有机碳同素同素复合材料的家族,在过去的几年中,该帐户的作者对此进行了广泛的研究。有趣的是,由于存在多种材料,杂交手性系统的CISS信号有时与纯手性系统中观察到的信号不同。鉴于手性复合材料的巨大多样性,到目前为止,CISS设备研究仅限于几种品种,预计该帐户将增加对手性复合材料家族的关注,并激励对其CISS应用的进一步研究。
BME 5267 生物流体力学 MAP 2302, EML 3701, EML 4703 √ FA 3(3,0) EAS 5123 中级空气动力学 EAS 4143, (EML 5060) √ 偶尔 3(3,0) EAS 5211 气动弹性学 EAS 3101/EML 3701, EAS 4210/EML 4220 √ 偶尔 3(3,0) EAS 5315 火箭推进 EAS 4134/ EML 4703 √ 偶尔 3(3,0) EEE 5332C 薄膜技术 EEE 3350/ 同等学历 √ 偶尔 3(2,1) EEE 5352C 半导体材料与器件特性 EEE 3350/ CI √奇数 FA 3(2,3) EEE 5356C 固态器件制造 EEE 3350 √ FA/ SP 4(3,3) EEE 5378 CMOS 模拟和数字电路设计 EEE 4309C √ FA 3(3,0) EEE 5513 数字信号处理应用 EEL 4750 √ SP 3(3,0) EEE 5542 随机过程 I EEL 3552C, STA 3032 √ FA/ SP 3(3,0) EEE 5557 雷达系统简介 EEL 3552C √ SP 3(3,0) EEL 5173 线性系统理论 EEL 3657 √ SP 3(3,0) EEL 5245C 电力电子学 EEE 4309C √ FA 3(3,0) EEL 5437C 微波工程EEL 3470/ CI √ FA 4(3,3) EEL 5462C 天线分析与设计 EEL 3470/ 等效 √ 奇数 FA 3(3,1) EEL 5630 数字控制系统 EEL 3657 √ FA 3(3,0) EEL 5669 自主机器人系统 EEL 5173/ CI √ 奇数 FA 3(3,0) EEL 5722C 现场可编程门阵列 (FPGA) 设计 EEE 3342C √ 偶数 FA 3(3,3) EIN 5108 技术组织环境 研究生身份/ CI √ FA 3(3,0) EIN 5117 管理信息系统 I CI √ SP 3(3,0) EIN 5140 项目工程 研究生身份/ CI √ FA/SP 3(3,0) EIN 5248C人体工程学 CI √ FA 3(2,2) EIN 5251 可用性工程 STA 3032/ 同等 √ SP 3(3,0) EIN 5346 工程物流 ESI 5306/ ESI 4312 √ 偶尔 3(3,0) EMA 5060 高分子科学与工程 EGN 3365 √ 偶尔 3(3,0) EMA 5104 中间结构与材料属性 EGN 3365 √ FA 3(3,0) EMA 5106 冶金热力学 EGN 3365 √ 偶尔 3(3,0) EMA 5140 陶瓷材料概论 EGN 3365 √ 偶尔 3(3,0) EMA 5317 材料动力学 CI √ 偶尔3(3,0) 指数移动平均线5584 生物材料 EGN 3365 √ 偶数 SP 3(3,0) EMA 5610 激光材料加工 EGN 3343/ EMA 5106 / CI √ 偶尔 3(3,0) EML 5060 MAE 中的数学方法 MAP 2302 √ FA 3(3,0) EML 5152 中级传热 EML 4142, EML 5060 √ 偶尔 3(3,0) EML5228C 模态分析 EML 3303C, EML 5060 √ 偶尔 3(3,0) EML 5237 中级材料力学 EML 3500/ EAS 4200, EML 5060 √ FA 3(3,0) EML 5271 中级动力学 EGN 3321/ EML 3217 √ 偶尔 3(3,0) EML 5290 MEMS 与微机械加工简介 研究生身份/CI √ 零星 FA 3(3,0) EML 5311 系统控制 EML 4225C,(EML 5060) √ 偶尔 3(3,0) EML 5402 涡轮机械 EML3101,EML 4703/EAS 4134 √ 偶尔 3(3,0) EML 5456 可持续电力涡轮机 EML 5237 √ FA 3(3,0) EML 5546 复合材料工程设计 EML 5237 √ 偶尔 3(3,0) EML 5713 中级流体力学 EML 4703,(EML 5060) √ 偶尔 3(3,0)需缴纳研究生学费和费用(GPA ≥ 3。0 必修)本科生需要 Override 才能注册这些课程。未在此列表中列出的课程必须获得系副主任的批准。于 2022 年 8 月 22 日更新