摘要 - 基本上所有多传感器系统都必须校准其传感器,以利用其全部潜力进行状态估计,例如映射和本地化。在本文中,我们研究了感知系统的外在和内在校准的问题。传统上,以围板或独特身份标签的形式的目标用于校准这些系统。我们建议将整个校准环境用作支持不同类型传感器的内在和外在校准的目标。这样做,我们能够校准具有不同配置,传感器类型和传感器方式的多个感知系统。我们的方法不依赖于传感器之间的重叠,这些传感器通常在使用经典目标时通常需要。主要思想是将每个传感器的测量值与校准环境的精确模型联系起来。为此,我们可以为每个传感器选择一种最适合其校准的特定方法。然后,我们使用最小二乘调整共同估算所有内在和外部设备。最终评估了我们系统的激光镜头到相机校准,我们提出了一种与校准无关的评估方法。这允许在不同校准方法之间进行定量评估。实验表明我们提出的方法能够提供可靠的校准。
摘要:表现出拓扑迪拉克费米的磁性材料引起了极大的关注。在这些系统中,自旋 - 轨道耦合和磁性的综合效应可以实现具有异国情调传输特性的新型拓扑相,包括异常的霍尔效应和磁性 - 手工学现象。在此,我们报告了TaCote 2中拓扑迪拉克抗铁磁性的实验签名,这是通过角度分辨的光学光谱和第一原理密度函数理论计算的实验签名。特别是,我们发现在费米水平上存在自旋 - 轨道耦合诱导的间隙,这与大型内在非线性霍尔电导率的表现一致。值得注意的是,我们发现后者对NE vector的方向极为敏感,这表明Tacote 2是实现具有前所未有的内在可调性水平的非挥发性自旋装置的合适候选者。关键字:非线性霍尔效应,狄拉克防fiferromagnet,拓扑,旋转 - 轨道耦合,arpes
摘要:氧化还原活性有机材料已成为电化学设备中传统无机电极材料的有希望的替代品。然而,在实用锂离子电池设备中的氧化还原活性有机材料的部署受到电解质溶剂的不希望溶解度,缓慢的电荷转移和大规模传输以及处理复杂性的阻碍。在这里,我们报告了一种新的分子工程方法,以准备固有微孔度(PIMS)的氧化还原活性聚合物,该聚合物具有开放式亚纳光孔的开放网络和丰富的可访问的基于羰基的氧化还原位点,用于快速锂离子运输和存储。氧化还原活性PIM可以溶液处理成具有均匀分散的微结构的薄膜和聚合物 - 碳复合材料,同时保持不溶于电解质溶剂。溶液处理后的氧化还原活性PIM电极表明,锂离子电池的循环性能提高,没有明显的容量衰减。氧化还原活性PIM具有内在微孔度,可逆的氧化还原活性和溶液加工性的合并性能,在各种用于存储,传感器和电子应用的电化学设备中可能具有广泛的效用。
电气是一类不寻常的材料,其中间质阴离子电子(IAES)被捕获在带正电荷的晶格框架的有序腔中。与调用离子晶体相反,在电气中,仅由晶体中的原子轨道引起的占用能带(BRS)的占用能带的组合不应分解,但必要性应包括以电气位置为中心的准原子轨道的BR。1,限制在阴离子空位位置的此类电子的波函数表现出独特的双重性,结合了由动能与库仑相互作用之间的竞争引起的强烈定位和空间范围。这种竞争导致实现了复杂的多体基础状态。在某些情况下,原子和间质电子子系统之间的耦合非常弱,以至于可以单独考虑后者,从而为纯量子电子系统中现象的实现和研究创造了一个显着的平台。2,3,这种治疗
。cc-by 4.0未经同行评审获得的未获得的国际许可证是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
在本文中,我们揭示了一种新结构,其中金属氧化物半导体场效应晶体管 (MOSFET) 与隧道场效应晶体管 (TFET) 并联以增加导通电流。为了提高器件中的隧道电流注入率,利用了栅极和衬底电极中的功函数工程以及通道 (源极袋) 中的掺杂工程。为了进一步增强器件的导通电流,通过在结构中结合 MOSFET 使用热离子注入机制。此外,使用异质栅极电介质来减少寄生电容。我们的分析表明,与 DW HGD SP TFET 相比,PTM-FET 晶体管在跨导、I on /I off 电流比、短通道效应(如 DIBL)、早期电压、最大传感器功率增益、单边功率增益、增益带宽积、单位增益频率和寄生电容方面具有多项优势。PTM-FET 晶体管的上述优势可以成为在低功耗和高性能集成电路应用中使用该器件的窗口。2020 作者。由 Elsevier BV 代表艾因夏姆斯大学工程学院出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc- nd/4.0/ ) 开放获取的文章。
过氧化氢(H 2 O 2)是生物医学诊断中的重要分析物。在人类生理学中,H 2 O 2充当氧化应激的生物标志物,这可能与诸如阿尔茨海默氏病,帕金森氏病,心肌梗死和癌症等医学疾病有关。[1,2]此外,基于氧化酶的生物传感器检测用于检测葡萄糖,尿酸和神经递质等分析物,依赖于监测在酶促反应过程中产生的H 2 O 2的浓度。[3,4]用于检测H 2 O 2的生物传感器主要在光学和 /或电化学技术上运行,并采用过氧化物酶辣根过氧化物酶(HRP)。尽管基于HRP的生物传感器对H 2 O 2检测具有很高的选择性和敏感性,但诸如高成本,短期货架寿命和环境不稳定性之类的因素限制了其更广泛应用的性能。[2]这导致了许多研究,其中探索了用于生物敏化应用的替代性非酶实体,称为过氧化物酶模拟物,它们具有用于H 2 O 2检测的固有性过氧样催化活性。[5,6]迄今为止,已知多种材料,例如贵金属纳米颗粒,金属氧化物纳米颗粒,基于碳的纳米材料和过渡金属络合物,都模仿过氧化物酶活性。[5,7]
fi g u r e 5地下水两亲物种丰富的瑞士。(a)基于占用模型中包含的12种物种(有关SDS,请参见附录S1,图S1.5),预测瑞士各个1×1 km细胞的平均物种丰富度。黑点表示采样位置。(b)在20×20 km细胞之间的区域物种丰富度,由12种建模物种的1×1 km预测编译。(c)很少发现的未建模物种的原始出现。(d)很少发现的,未模块化的物种对每个20×20 km细胞的α多样性的贡献,包括常见的模型输出和很少发现的物种的原始出现。
研究文章| Behavioral/Cognitive Diurnal fluctuations in steroid hormones tied to variation in intrinsic functional connectivity in a densely sampled male https://doi.org/10.1523/JNEUROSCI.1856-23.2024 Received: 29 September 2023 Revised: 3 April 2024 Accepted: 6 April 2024 Copyright © 2024 Grotzinger et al.这是根据Creative Commons Attribution 4.0国际许可条款分发的开放访问文章,只要将原始工作正确归因于任何媒介,它允许在任何媒介中进行无限制的使用,分发和复制。
大多数哺乳动物的生理学都受到生物节律的控制,包括内分泌系统和时变激素分泌。精确的神经影像学研究提供了独特的见解,即内分泌系统如何动态调节人脑的各个方面。最近,我们建立了雌激素推动连通性的广泛模式并增强大规模脑网络在连续30天进行一次采样的女性中的全球效率,从而捕获完整的月经周期。类固醇激素的产生也遵循明显的正弦模式,睾丸激素的峰值在上午6点至7点之间。下午7点至8点之间的Nadir为了捕捉大脑对激素产生的昼夜变化的反应,我们对一个健康的成年男子进行了一项伴侣精度成像研究,该研究连续30天完成一次MRI和静脉穿刺。结果在睾丸激素,17β-雌二醇(雌激素的主要形式)和皮质醇的主要形式中确定了稳健的昼夜弹性。标准化的回归分析揭示了睾丸激素,雌二醇和皮质醇浓度与一致性全脑模式之间的广泛关联。特别是,背注意网络中的功能连通性与昼夜闪烁的激素结合在一起。此外,将男人和自然骑自行车的女人之间的密集采样数据集进行比较,表明性激素的发光与性别中的全脑相干性模式相关联,并且与男性的身高相关。一起,这些发现增强了我们对类固醇激素作为快速神经调节剂的理解,并提供了证据表明,类固醇激素的昼夜变化与全脑功能连通性的模式有关。