摘要 — 脑电图 (EEG) 信号由于其防欺骗功能而有望成为其他生物识别技术的替代品。先前的研究侧重于通过分析任务 / 条件特定的 EEG 来捕捉个体差异。这项工作尝试通过规范化相关方差来建模独立于任务 / 条件的生物特征签名。为了实现这一目标,本文扩展了基于子空间的文本独立说话人识别的思想,并提出了用于建模多通道 EEG 数据的新颖修改方法。所提出的技术假设生物特征信息存在于整个 EEG 信号中,并在高维空间中随时间积累统计数据。然后将这些高维统计数据投影到低维空间,生物特征信息得以保留。使用所提出的方法获得的低维嵌入被证明是与任务无关的。最佳子空间系统识别个体的准确率分别为 86.4% 和 35.仅使用 9 个 EEG 通道,在分别包含 30 名和 920 名受试者的数据集上实现了 9% 的准确率。该论文还深入分析了子空间模型在训练过程中对未见过的任务和个体的可扩展性,以及子空间建模所需的通道数量。
摘要 - 电脑摄影(EEG)信号是其他生物识别技术的替代方案,因为它们的保护源于SPOOFIF。以前的研究集中在通过分析任务/条件特异性脑电图来捕获个人变异性。这项工作试图通过标准化相关方差来模拟独立于任务/条件的生物特征特征。朝向这个目标,本文从基于子空间的文本独立说话者识别中扩展了想法,并提出了用于建模多渠道脑电图数据的新型修改。所提出的技术假设生物特征识别信息存在于整个脑电图信号中,并在高维空间中跨时间积累统计。然后将这些高维统计数据投影到保留生物识别信息的较低维空间。使用所提出的方法获得的较低维嵌入显示为任务是独立的。最佳的子空间系统确定精度为86的个体。4%和35。在数据集中分别使用30和920受试者的数据集使用仅使用9个EEG通道。本文还提供了有关子空间模型在培训期间未见任务和个人的可扩展性以及子空间建模所需的渠道数量的见解。
抽象的计算模型位于基本神经科学和医疗保健应用的交集,因为它们允许研究人员在计算机中检验假设,并预测实验和相互作用的结果,这些实验和相互作用在现实中很难测试。然而,在神经科学和心理学不同领域的研究人员以许多不同的方式理解了“计算模型”的含义,阻碍了交流和协作。在这篇综述中,我们指出了脑电图(EEG)中计算建模的艺术状态,并概述了如何使用这些模型来整合电生理学,网络级模型和行为的发现。一方面,计算模型用于研究产生大脑活动的机制,例如用脑电图测量的,例如在不同频段下振荡的瞬时出现和/或不同的空间地形。另一方面,计算模型用于设计实验和测试硅中的假设。脑电图计算模型的最终目的是获得对脑电图信号基础的机制的综合理解。这对于对脑电图测量的准确解释至关重要,这可能最终用于开发新的临床应用。
纠缠在量子信息处理中起着至关重要的作用,包括量子通信[1,2]和量子计算[3–5]。它是量子力学和经典力学的显著区别之一。几十年来,纠缠一直是量子力学基础研究的焦点,尤其与量子不可分性和违反贝尔不等式有关[6]。纠缠已被视为如此重要的资源,因此需要一种对其进行量化的方法。对于二分纠缠,Horodecki 家族[7]最近撰写了一篇详尽的综述,Plenio 和 Virmani[8]对纠缠测度进行了详细的综述。纠缠的操作标准之一是施密特分解[9–11]。施密特分解是研究二分纯态纠缠的一个很好的工具。施密特数提供了一个重要的变量来对纠缠进行分类。部分纠缠纯态的纠缠可以自然地通过其纠缠熵来参数化,定义为冯·诺依曼熵,或等效地定义为施密特系数平方的香农熵 [ 9 , 11 ]。如果只有所谓的“高斯态”,情况就会变得简单
B'Abstract Aharoni和Howard,以及独立的Huang,Loh和Sudakov提出了以下彩虹版本的ERD \ XCB \ XCB \ X9DOS匹配猜想:用于正整数N,K,M,使用N \ Xe2 \ X89 \ X89 \ X89 \ XA5 km(如果每个人)f 1,f 1,f 1,f 1,f 1,如果。。,f m \ xe2 \ x8a \ x86 [n] k的大小大于最大{n k \ xe2 \ x88 \ x92 n \ x92 n \ xe2 \ x88 \ x88 \ x92 m +1 k,km \ xe2 \ xe2 \ x88 \ x88 \ x92 1 k},然后存在Emubse em subse et emsetse。。。,e m,以至于所有i \ xe2 \ x88 \ x88 [m] e i \ xe2 \ x88 \ x88 f i。我们证明存在一个绝对常数n 0,因此该彩虹版本适用于k = 3和n \ xe2 \ x89 \ xa5 n 0。我们将这个彩虹匹配的问题转换为特殊的HyperGraph H上的匹配问题。然后,我们将几种现有技术结合在均匀超图中的匹配中:\ xef \ xac \ x81nd h中的吸收匹配m;使用Alon等人的随机化过程与\ Xef \ Xac \ x81nd几乎是H \ Xe2 \ X88 \ X92 V(M)的几乎常规子图; \ xef \ xac \ x81nd在H \ xe2 \ x88 \ x92 V(m)中几乎完美匹配。要完成该过程,我们还需要证明在3-均匀的超图中的匹配项上获得新的结果,这可以看作是Luczak和Mieczkowska结果的稳定版本,并且可能具有独立的利益。
我们遵循 [9, 13] 中的符号。设 G 为图。对于 V(G) 的非平凡划分 (A,B),1如果路径 P 的一端在 A 中而另一端在 B 中,则我们称路径 P 为 A - B 路径。设 P 为图 G 中的一条路径。设 | P | 为 P 中的边数。如果 | P | 为偶数(分别为奇数),则我们称 P 为偶数(分别为奇数)。设 C 为按循环顺序具有顶点 v 0 ,v 1 ,...,vt − 1 的环。设 C i,j 表示 C 的子路径 vivi +1...vj,其中索引取自加法群 Z t 。设 H 为 G 的子图。如果顶点 v ∈ V ( G ) − V ( H ) 在 G 中与 V ( H ) 中的某个顶点相邻,则我们称 H 和顶点 v ∈ V ( G ) − V ( H ) 在 G 中相邻。设 NG ( H ) = S v ∈ V ( H ) NG ( v ) − V ( H ) 且 NG [ H ] = NG ( H ) ∪ V ( H )。对于 S ⊆ V ( G ),如果 V ( G ′ ) = ( V ( G ) − S ) ∪{ s } 且 E ( G ′ ) = E ( G − S ) ∪{ vs : v ∈ V ( G ) − S 与 G 中的 S 相邻 } ,我们称图 G ′ 是通过将 S 收缩为顶点 s 而从 G 得到的。如果 G − v 包含至少两个分支,则连通图 G 的顶点 v 是 G 的割顶点。 G 中的块 B 是 G 的最大连通子图,使得不存在 B 的割顶点。注意块是孤立顶点、边或2连通图。G 中的端块是 G 中最多包含一个 G 的割顶点的块。如果 G 是图并且 x, y 是 G 的两个不同顶点,我们称 ( G, x, y ) 为有根图。有根图 ( G, x, y ) 的最小度为 min { d G ( v ) : v ∈ V ( G ) −{ x, y }} 。如果 G + xy 是2连通的,我们还称有根图 ( G, x, y ) 是2连通的。我们称 k 条路径或 k 条循环 P 1 , P 2 , . . . , P k 为
情绪已与自主神经(ANS)和中枢神经系统的活动联系起来(CNS; Dalgleish,2004)。因此,很难将个人(即离散)情绪类别与ANS中的特定响应模式联系起来(参见Kragel&Labar,2013年; Kreibig,2010年; Siegel等人,2018年)或不同的大脑区域(Lindquist等,2012;但是参见Saarimäki等,2016)。相反,情绪似乎是通过与基本心理学(即,也是非情感)操作有关的大脑区域和身体激活的一组动态实现的(即“心理原始人”; Lindquist等,2012)。在这种观点中,Humans通常处于令人愉悦或不愉快的唤醒状态的波动状态(“核心影响”; Russell&Feldman Barrett,1999; Lindquist,2013),可能会受到外部刺激的影响。表情唤醒可能会有一种“共同货币”来比较不同的刺激或事件(Lindquist,2013年),并代表基本的神经过程,这些神经过程是各种表情的基础(Wilson-Mendenhall等,2013)。
情绪已与自主神经(ANS)和中枢神经系统的活动联系起来(CNS; Dalgleish,2004)。因此,很难将个人(即离散)情绪类别与ANS中的特定响应模式联系起来(参见Kragel&Labar,2013年; Kreibig,2010年; Siegel等人,2018年)或不同的大脑区域(Lindquist等,2012;但是参见Saarimäki等,2016)。相反,情绪似乎是通过与基本心理学(即,也是非情感)操作有关的大脑区域和身体激活的一组动态实现的(即“心理原始人”; Lindquist等,2012)。在这种观点中,Humans通常处于令人愉悦或不愉快的唤醒状态的波动状态(“核心影响”; Russell&Feldman Barrett,1999; Lindquist,2013),可能会受到外部刺激的影响。表情唤醒可能会有一种“共同货币”来比较不同的刺激或事件(Lindquist,2013年),并代表基本的神经过程,这些神经过程是各种表情的基础(Wilson-Mendenhall等,2013)。
西雅图中央学院、北西雅图学院和南西雅图学院正在为西雅图迎接这种新的生活方式做准备,确保我们的城市始终处于创新的前沿。当今的劳动力——以及我们未来的劳动力——必须是多元化、高技能和协作的。我们在提供可实现的教育和技能方面处于领先地位,让任何有热情和决心的人都能走上工作或接受高等教育的道路。通过这样做,我们保持了我们的城市和地区的经济活力。