人类的大脑通过对客观世界的认知,形成图像和影像,这个过程也是人类最重要的信息来源,通过观察现实世界中人体各个系统的运行状态,很容易理解。随着人工智能、多媒体、计算机等新型信息技术的不断发展,图像处理应用也受到人们的青睐。图像识别技术在计算机系统的支持下,可以给人们的生产生活带来极大的便利。本文基于此背景,完成了计算机图像识别系统的设计,并通过改进图像算法完成了优化。
Panimalar Institute of Technology, Chennai -----------------------------------------------------------------------------***--------------------------------------------------------------------------- Abstract-- The visual representations of the inner constituents of body along with the functions of either organs or tissues comprising its physiology are developed in medical imaging..本文提到的系统的目的是检测出血的存在并在检测到其类型的情况下进行分类。ct图像在这里考虑找到出血。进行预处理技术是为了使输入图像适合进一步处理。进行预处理后,图像通过形态操作进行。然后采用分割算法进行分割。绘制了主动轮廓并提取了特征。可以通过医疗援助来查看和解释最终结果。这项研究的结果增加了预测图像出血,然后对其类型进行分类的机会。系统在分类三种类型的出血时的平均准确性被发现为98%。关键词 - CT,脑内出血,硬膜下出血,外部出血,蛛网膜下腔出血,流域算法。
– 奥地利航天局 (ASA)/奥地利。 – 比利时联邦科学政策办公室 (BFSPO)/比利时。 – 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。 – 中国卫星发射和跟踪控制总院、北京跟踪和通信技术研究所 (CLTC/BITTT)/中国。 – 中国科学院 (CAS)/中国。 – 中国空间技术研究院 (CAST)/中国。 – 英联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 丹麦国家空间中心 (DNSC)/丹麦。 – 航空航天科学和技术部 (DCTA)/巴西。 – 电子和电信研究所 (ETRI)/韩国。 – 欧洲气象卫星应用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 地理信息和空间技术发展局 (GISTDA)/泰国。 – 希腊国家空间委员会 (HNSC)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 空间研究所 (IKI)/俄罗斯联邦。 – 韩国航空宇宙研究院 (KARI)/韩国。 – 通信部 (MOC)/以色列。 – 穆罕默德·本·拉希德航天中心 (MBRSC)/阿拉伯联合酋长国。 – 国家信息和通信技术研究所 (NICT)/日本。 – 国家海洋和大气管理局 (NOAA)/美国。 – 哈萨克斯坦共和国国家空间局 (NSARK)/哈萨克斯坦。 – 国家空间组织 (NSPO)/中国台北。 – 海军空间技术中心 (NCST)/美国。 – 粒子与核物理研究所 (KFKI)/匈牙利。 – 土耳其科学技术研究委员会 (TUBITAK)/土耳其。 – 南非国家航天局 (SANSA)/南非共和国。 – 空间和高层大气研究委员会 (SUPARCO)/巴基斯坦。 – 瑞典空间公司 (SSC)/瑞典。 – 瑞士空间办公室 (SSO)/瑞士。 – 美国地质调查局 (USGS)/美国。
摘要发达国家最重要的优先事项之一是使用机器决策而不是人类。需要该领域的领域之一就是健康。为此,确定人们的肥胖和瘦弱在研究和研究社会的健康状况和采用卫生系统政策方面非常有用。人物作为研究数据库的图像是从几个不同的环境中编写的,在这些环境中,相机与人之间的距离在所有人之间都是相同的。然后,使用背景扣除去除图像的背景。包括图像形态特征的图像特征是从图像中提取的,并分为两类以执行分类操作。人们分为三类:脂肪,中和薄。使用高斯低通滤波器方法将图像液体使用,并使用两种盐和胡椒噪声和高斯噪声进行过滤的不同频率。n正常图像,最高精度与精度为97.1%的SVM方法有关,最低的方法分别与MLP,贝叶斯和KNN算法有关。本文的结果表明,除了能够从肥胖和瘦弱方面对社会人民进行分类之外,还比到目前为止提出的大多数方法都具有更高的准确性。根据这项研究的解决方案和结果,通过增加人们的形象,除了提高准确性外,它将达到更实际的水平。关键字关键字:分类,图像处理,机器学习,SVM,薄,脂肪
..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
本研究旨在使用混合溶液方法诊断出视网膜底面图像的糖尿病性视网膜病。更具体,混合方法依赖于结合深度学习和图像处理以获得更好的结果。可靠的糖尿病性视网膜病变(DR)从数字眼底图像中检测被认为是医疗图像处理中的一个开放问题,需要开发替代溶液。失明和视觉丧失可能来自DR。本研究采用径向基函数(RBF)神经网络分类器来自动识别视网膜图像是与疾病相关或非药物相关的。糖尿病性视网膜病(DR)会导致视觉损害的视网膜病变,通常与糖尿病有关。如果未及时检测到它,则可能导致失明。早期诊断和治疗DR可以帮助防止视力丧失。深度学习已成为最近最受欢迎的方法之一,显示了各种应用程序的性能提高,尤其是在医学图像的分析和分类中。由于其出色的有效性,卷积神经网络越来越多地用作医学图像分析中的深度学习技术。图像处理在研究的建议的解决方案方法中使用。然后将卷积神经网络分类以进行诊断。使用Eyepacs数据库的33000个视网膜底面图像来验证该技术。深度学习模型使用彻底的方法来训练和评估Alexnet检测糖尿病性视网膜病的模型。模型精度为0.7349,结果表明了值得注意的性能指标和成功的准确分类。
摘要本研究提出了一种新型系统,用于帮助视力障碍的人使用基于网络摄像头的扫描方法来识别印度货币笔记。目的是通过通过计算机视觉系统提供实时货币识别来增强盲人用户的独立性和可访问性。该系统利用计算机视觉算法从网络摄像头处理实时视频feed,从印度货币货币注释中识别和提取相关功能。所考虑的关键特征包括颜色,大小,图案和特定于面额的特征。机器学习模型用于强大的分类和识别各种货币面额。为了确保实时功能,该系统旨在在标准的个人计算机或笔记本电脑上操作,从而可以轻松地用于广泛的用户群。用户界面的开发是简单性和用户友好性的,提供听觉或触觉反馈以传达检测到的货币面额。考虑了磨损,照明条件和观看角度的变化,进行了各种印度货币纸币进行广泛的测试。评估系统的准确性,速度和可靠性,以确保在现实情况下对视觉障碍用户的实际实用性。1。简介
图 1 有机光电突触器件 . (a) 人类视网膜和大脑系统示意图 ; (b) 储池计算结构 ; (c) 提拉法制备有机薄膜示意图 ; (d) C 8 -BTBT 薄膜的光学显微镜图像 ( 标尺 : 100 μm); (e) PDIF-CN 2 薄膜的光学显微镜图像 ( 标尺 : 100 μm); (f) C 8 -BTBT 薄膜的 AFM 图像 ( 标 尺 : 1.6 μm); (g) PDIF-CN 2 薄膜的 AFM 图像 ( 标尺 : 1.6 μm); (h) 具有非对称金属电极的有机光电突触晶体管器件结构 ; (i) 器件 配置为光感知型突触 ; (j) 器件配置为计算型晶体管 ( 网络版彩图 ) Figure 1 Organic optoelectronic synaptic devices. (a) The schematic diagram of human retina and brain system. (b) The architecture of a reservoir computing. (c) The preparation of organic thin films by dip coating method. (d) The optical microscope image of C 8 -BTBT film. Scale bar: 100 μm. (e) The optical microscope image of PDIF-CN 2 film. Scale bar: 100 μm. (f) The AFM image of C 8 -BTBT film. Scale bar: 1.6 μm. (g) The AFM image of PDIF-CN 2 film. Scale bar: 1.6 μm. (h) The schematic diagram of organic optoelectronic synaptic transistor with asymmetric metal electrodes. (i) The device is configured as a light-aware synapse. (j) The device is configured as a computational transistor (color online).
生成模型的最新进展导致了模型,这些模型既可以为大多数文本输入产生现实和相关的信息。这些模型每天都用于生成数百万张图像,并具有巨大影响诸如生成艺术,数字营销和数据增强等领域。鉴于它们的影响力,重要的是要确保生成的内容反映全球的伪影和周围环境,而不是过分代表世界的某些地区。在本文中,我们使用众包研究的研究衡量了通过dall·e 2产生的普通名词(例如房屋)的地理代表,以及稳定的扩散模型,其中包括27个国家 /地区的540名参与者。为了有意地指定没有国家名称的意见,生成的图像最反映了美国之后是印度的周围,而顶级世代很少反映出所有其他国家的周围环境(平均得分少于5分中的3个)。在输入中指定国家名称的代表性增加了1。平均在5-点李克特(Dall)的李子量表上为44点。75对于稳定的扩散,许多国家的超高分数仍然很低,这突出了将来模型在地理上更具包含的需求。最后,我们研究了量化使用用户研究的产生图像的地理代表性的可行性。1