在过去的几十年中,常规磁共振成像仍然是最常用的标准治疗成像方法 [5]。其能力非常有限,经常导致在区分两种不同类型的脑肿瘤发展时产生混淆。特别是在单发病灶的情况下,原发性恶性脑肿瘤和脑转移瘤在磁共振成像中的模式几乎相同,尽管治疗和管理完全不同。原发性恶性脑肿瘤患者将立即接受手术切除,而脑转移瘤患者必须首先经过更复杂的识别过程来确定癌症的起源位置,然后才能决定后续的治疗方法。冗长而不准确的诊断将进一步加重患者的病情 [6]。可用于观察上述比较的常规磁共振成像的两个序列是用于可视化肿瘤周围水肿的液体衰减反转恢复 (FLAIR) 序列和 T1W1
EE 743. 工程中的数值方法。3 小时。本课程涵盖了广泛工程应用和数据分析的数值方法理论和实践。主题包括数值微积分、线性代数和优化。学生将接触到卷积神经网络、压缩感知、特征脸、稳定性、主成分分析、k 均值聚类、使用活动轮廓进行图像分割、噪声中信号检测和函数拟合等现代主题。本课程提供编程数值分析算法的实践经验。
a。机器学习(ML)范式b。神经网络,体系结构,激活功能,优化技术c。表示学习,嵌入,功能工程d。概率模型,贝叶斯网络,隐藏的马尔可夫模型(HMMS)e。推理和计划f。自然语言处理,令牌化,言论部分(POS)标记,命名实体识别(NER),Word2Vec g。计算机视觉,图像分类,对象检测,图像分割h。基础模型及其角色
联合学习允许分布式的医疗机构可以协作学习具有隐私保护的共享预测模型。在临床部署时,接受联邦学习的模型仍会在联邦外面完全看不见的霍斯群岛上使用时仍会遭受性能下降。在本文中,我们指出并解决了联合域的生成(FedDG)的新型问题设置,该设置旨在从多个分布式源域中学习联合模型,以便它可以直接概括为看不见的目标域。我们提出了一种新颖的方法,在持续频率空间(ELCF)中称为情节学习,通过启动每个客户端在数据分散率的挑战性约束下利用多源数据分布来利用多源数据分布。我们的方法通过有效的连续频率空间插值机制以隐私保护方式传输客户之间的分布信息。通过转移的多源分布,我们进一步仔细设计了面向边界的情节学习范式,以将本地学习暴露于域分布变化,尤其是在医学图像分割场景中尤其满足模型概括的挑战。在两个医学图像分割任务上,我们的方法的有效性优于最先进的表现和深入消融实验。可以在https://github.com/liuquande/feddg-elcfs上使用代码。
颅内出血(ICH)是一种威胁生命的医疗紧急情况,需要及时,准确的诊断才能有效治疗并提高患者的存活率。虽然深度学习技术已成为医学图像分析和处理的主要方法,但最常用的监督学习通常需要大型,高质量的注释数据集,这些数据集可能是昂贵的,尤其是对于像素/体素/体素图像分段。为了应对这一挑战并促进ICH治疗决策,我们采用了一种新型的弱监督方法来进行ICH分割,并利用经过分类标签的ICH分类任务训练的SWIN变压器。我们的方法利用了注入头梯度的自我发项图的分层组合,以生成准确的图像分割。此外,我们对不同的学习策略进行了探索性研究,并表明二进制ICH分类对自我发场地图的影响更大,与完全ICH的亚型相比。平均骰子得分为0.44,我们的技术达到了与流行的U-NET和SWIN-UNETR模型相似的ICH分割性能,并使用GradCam胜过类似的弱监督方法,这表明了在挑战医学图像分割任务中所构成的框架的巨大潜力。我们的代码可在https://github.com/healthx-lab/hgi-sam上找到。
摘要 — 对于病理病例和在不同中心获取的图像(而不是训练图像),用于医学图像分割的深度学习模型可能会意外且严重地失败,其标记错误违反了专家知识。此类错误破坏了用于医学图像分割的深度学习模型的可信度。检测和纠正此类故障的机制对于安全地将这项技术转化为临床应用至关重要,并且很可能成为未来人工智能 (AI) 法规的要求。在这项工作中,我们提出了一个值得信赖的 AI 理论框架和一个实用系统,该系统可以使用基于 Dempster-Shafer 理论的回退方法和故障安全机制来增强任何骨干 AI 系统。我们的方法依赖于可操作的可信 AI 定义。我们的方法会自动丢弃由骨干 AI 预测的违反专家知识的体素级标记,并依赖于这些体素的回退。我们在最大的已报告胎儿 MRI 注释数据集上证明了所提出的可信 AI 方法的有效性,该数据集由来自 13 个中心的 540 个手动注释的胎儿大脑 3D T2w MRI 组成。我们值得信赖的 AI 方法提高了四个骨干 AI 模型的稳健性,这些模型适用于在不同中心获取的胎儿脑部 MRI 以及患有各种脑部异常的胎儿。我们的代码可在此处公开获取。
水下图像细分对于诸如水下探索,海洋环境监测和资源开发等任务至关重要。尽管如此,鉴于水下环境的复杂性和可变性,改善模型准确性仍然是水下图像分割任务中的关键挑战。为了解决这些问题,本研究提出了基于标准Segformer模型的水下图像的高性能语义分割方法。首先,Segformer中的混合变压器主链被Swin Transformer替换,以增强特征提取并促进对全局上下文信息的有效获取。接下来,在骨干的下采样阶段和解码器中引入了有效的多尺度注意(EMA)机制,以更好地捕获多尺度特征,从而进一步提高了细分精度。此外,将特征金字塔网络(FPN)结构合并到解码器中,以在多个分辨率下组合特征图,从而使模型可以有效地集成上下文信息,从而在复杂的水下环境中增强了鲁棒性。对SUIM水下图像数据集进行测试表明,拟议的模型在多个指标上达到了高性能:联合(MIOU)的平均相交(MIOU)为77.00%,平均召回(MRECALL)为85.04%,平均精度(Mprecision)为89.03%,为89.03%,F1Score(MF1Score(Mf1score)为86.63%)。与标准Segformer相比,MIOU的提高3.73%,MRECALL为1.98%,Mprecision的3.38%和MF1Score的2.44%的提高,参数增加了989万。结果表明,所提出的方法通过最小的其他计算实现了出色的分割精度,从而显示了水下图像分割中的高性能。
生物医学成像技术,例如磁共振成像(MRI),计算机断层扫描(CT)和显微镜,生成对诊断和研究至关重要的高分辨率图像。计算机和信息技术具有大大增强的图像处理和分析,使研究人员能够提取详细信息,检测异常并量化各种参数。通过图像分割,注册和特征提取,计算机可以帮助识别和表征结构,肿瘤和其他生物实体。这些进步显着提高了医学诊断,手术计划和监测疾病进展的准确性和效率[3]。
1 5 367 Solar Image Synthesis with Generative Adversarial Networks 1 6 377 Optimizing 3D Geometry Reconstruction from Implicit Neural Representations 1 7 378 Spectral Wavelet Dropout: Regularization in the Wavelet Domain 1 8 380 REFORMER: A ChatGPT-Driven Data Synthesis Framework Elevating Text-to-SQL Models 1 9 401 Centralized Multi Agent Proximal Policy Optimization With Attention 1 10 407转移学习对前列腺图像分割的变形金刚网络的影响1 11 409 Intellibeehive:自动蜂蜜蜜蜂,花粉和Varroa驱动器监控系统
P-D-08研究摘要用于医学图像分割的黑盒改编Jay Nitin Paranjape; Shameema Sikder,医学博士,FACS; S. Swaroop Vedula,MBBS,博士,MPH;以及马里兰州巴尔的摩的Vishal M. Patel Johns Hopkins大学;约翰·霍普金斯大学医学院,马里兰州巴尔的摩简介:大型基础模型在一般计算机视觉任务中具有先进的图像细分,但是由于接受了非医疗数据培训,它们在医学图像细分方面经常表现不佳。当前用于将这些模型调整为医疗任务的方法通常假设对模型参数完全访问,这并不总是可行的,因为许多模型仅作为API或黑框可用。此外,对此类模型进行微调可能是计算密集的,并且隐私问题限制了与第三方共享医疗数据。方法:为了解决这些挑战,我们提出了BAPS(用于促进分割的黑盒改编),这是一种新型技术,旨在在黑盒条件下适应医疗图像分割中的基础模型。BAPS由两个组成部分组成:一个图像促销解码器(IP解码器),该解码器(IP解码器)从输入映像和提示中生成视觉提示,以及零订单优化(Zoo)方法,SPSA-GC,该方法可更新IP解码器,而无需通过基础模型进行回音。此方法允许在不了解模型的权重或梯度的情况下进行适应,因此它非常适合黑色盒子方案。结果:BAPS以四种不同的医学成像方式进行了测试,表明原始基础模型的性能大约提高了4%。公开可用的BAPS代码。实现了这种改进,而没有与基础模型的内部参数进行任何直接相互作用,从而突出了我们的黑盒适应方法的有效性。结论:BAPS为将基础模型调整为医学图像分割提供了创新的解决方案,尤其是在模型参数无法访问时。通过将图像推出解码器与零订单优化方法相结合,BAP可以有效地提高分割性能,而无需访问模型的内部结构。这种方法解决了计算和隐私方面的关键挑战,为在医学成像中应用基础模型提供了新的途径。