摘要:水下图像遭受颜色失真和细节的损失,这严重影响了水下机器人的视觉感知能力。为了提高检测准确性,提出了一个多任务学习框架,以基于对比度学习的水下图像增强和对象检测提出了多任务学习框架,这不仅会产生视觉上友好的图像,还可以提高对象检测精度,从而实现对象检测任务的图像增强图像。为了解决不清楚目标纹理特征的问题,用于检测任务的区域生成模块用于构建用于对比性学习的正面和负面图像块,以确保目标区域更接近特征空间中的原始图像。此外,检测到的梯度信息用于指导图像增强方向,有益于目标检测。此外,提出了一种基于循环生成对抗网络的图像翻译方法来学习和保留图像增强的清晰图像特征,从而消除了对配对的水下图像的需求并减少了数据要求。最后,在EUVP,U45和UIEB数据集上对增强算法进行了验证,并且在RUOD,URPC2020和RUIE数据集上验证了检测算法。实验结果表明,所提出的算法可以在主观视觉中有效纠正颜色失真,同时保留原始图像和目标的结构纹理。就客观指标而言,峰值信噪比达到24.57 dB,结构相似性达到0.88。在更快的R-CNN(基于区域的卷积神经网络)和Yolov7(您只看一次,版本7)算法后,检测精度平均提高了2%。关键字:水下图像增强;对比学习;循环生成对抗网络;对象检测
欢迎参加有关人工智能和营销的NPTEL在线认证课程。现在我们将讨论模块26。因此,正如您从这张幻灯片中可以看到的那样,现在我们转到了第5章,该章正在使用AI建立强大的品牌,在模块26中,我们将讨论使用人工智能对品牌的标准化,个性化和关系。因此,让我们从模块26开始,此幻灯片显示模块概述。因此,我们将首先了解品牌是什么以及品牌如何工作。探索AI,探索AI在建立强烈品牌中的作用,然后研究不同类型的AI在标准化,个性化和品牌关系中的应用。然后,我们将研究AI的品牌限制,并探索AI质量与品牌关系之间的联系。那么,什么是品牌?ESPN是一个强大的品牌。ESPN是如何建立一个强大的全能体育频道的?如果您想到体育网络,ESPN肯定会首先进入列表。因此,这些都是它所进行的所有活动。喀拉拉邦旅游拥有自己的国家。喀拉拉邦旅游业已成功地将目的地的品牌名称,徽标和标语神自己的国家贴上了标签。所以,在探测全世界之后,约翰和尼古拉选择了天堂。所以,他们来到这里来到喀拉拉邦,这是上帝自己的国家。品牌是物理特征的组合。
摘要。事件摄像机作为具有较高dynamic范围的生物启发的视觉传感器,能够解决局部过度繁殖或不受欢迎的问题,即在具有高动态范围或波动的光照条件下,常规的基于框架的摄像机会遇到的常规基于框架的摄像机。由于两种相机之间的模态差距,简单的融合是不可行的。此外,由摄像机位置和框架速率偏差引起的幽灵伪影也会影响最终融合图像的质量。为了解决问题,本文提出了一个联合框架,将当地暴露的帧与事件摄像机捕获的事件流相结合,以在高动态范围场景中以偏斜的纹理增强图像。具体来说,使用轻量级的多尺度接收场块用于从事件流到帧的快速模态转换。此外,还提出了一个双分支融合模块来对齐特征并删除幽灵伪像。实验结果表明,所提出的方法有效地减轻了一系列极端照明条件的图像高度明亮和黑暗区域的信息丢失,从而产生了逼真的和自然的图像。
摘要 — 本研究探讨了图神经网络 (GNN) 和超图在使用氟脱氧葡萄糖正电子发射断层扫描 (FDG-PET) 图像改善抑郁症诊断的潜力。我们使用核密度估计和动态时间规整从单个静态 FDG-PET 图像构建图形和超图表示。在本地精神病数据集上使用各种 GNN 分类器(包括图卷积网络 (GCN) 和图同构网络 (GIN))评估这些表示。我们的实验表明,与成对图相比,GNN(尤其是 GCN)在超图上的性能更优越。我们强调了基于超图的表示在捕捉与抑郁症相关的复杂模式方面的整体功效。此外,我们对超图表示的探索为提高诊断准确性提供了有希望的途径,特别是在捕捉复杂的大脑连接模式方面。这项研究为 GNN 有助于使用 FDG-PET 图像更好地诊断精神疾病提供了证据,为个性化治疗策略和跨不同临床环境的诊断进步提供了见解。索引词 — 抑郁症、FDG-PET、KDE、DTW、图、超图、图神经网络、GIN、GCN。
摘要。大型模型的兴起,通常称为基础模型,导致了人工智能研究领域的巨大进步。我们的经验发现表明,在特定表面分割挑战方面,大型模型可能会挣扎或表现不佳,包括识别和在条形钢表面上的缺陷(s 3 d)以及磁性瓷砖表面上不完美的情况检测。将大型模型应用于缺陷分割,而不是对大型模型进行填充,我们建议使用几种经典滤器来增强输入图像,提出了segrive demage d riven d riven d riven-d riven d riven-d riven。在这种情况下,多层中的过滤器的权重通过增强学习控制。然后,我们在具有不同少量设置的两个S 3 D数据集上测试我们的方法。我们的方法与S 3 D(例如CPANET)的其他方法相比,完成了任务。我们认为,我们的工作不仅为下游任务打开了机会,例如分割大型模型的工业缺陷,而且可能在将来在各种领域中都有潜在的应用,包括医疗图像处理,远程感应图像分析,农业等。
摘要。本研究系统地研究了图像增强技术对基于卷积神经网络 (CNN) 的脑肿瘤分割的影响,重点关注直方图均衡化 (HE)、对比度限制自适应直方图均衡化 (CLAHE) 及其混合变体。该研究在 3064 张脑 MRI 图像的数据集上采用 U-Net 架构,深入研究了预处理步骤,包括调整大小和增强,以优化分割精度。对基于 CNN 的 U-Net 架构、训练和验证过程进行了详细分析。利用准确度、损失、MSE、IoU 和 DSC 等指标进行的比较分析表明,混合方法 CLAHE-HE 始终优于其他方法。结果突出了其卓越的准确度(训练、测试和验证分别为 0.9982、0.9939、0.9936)和强大的分割重叠,Jaccard 值为 0.9862、0.9847 和 0.9864,Dice 值为 0.993、0.9923 和 0.9932,强调了其在神经肿瘤学应用中的潜力。研究最后呼吁改进分割方法,以进一步提高神经肿瘤学的诊断精度和治疗计划。
图像增强(点处理):图像负片、阈值处理、有背景和无背景的灰度切片、幂律和对数变换、对比度拉伸、直方图均衡化和直方图规范空间域图像增强(邻域处理):用于图像增强的低通和高通滤波、空间滤波基础、生成空间滤波器掩模 - 平滑和锐化空间滤波图像变换:一维 DFT、二维离散傅里叶变换及其逆变换、二维 DFT 的一些属性、沃尔什-哈达玛、离散余弦变换、哈尔变换、倾斜变换频域图像增强:频域滤波基础、平滑和锐化频域滤波器
摘要 - 感谢任务驱动的图像质量增强(IQE)模型等最新成就,例如ESTR [1],图像增强模型和视觉识别模型可以相互增强彼此的定量,同时产生我们人类视觉系统可感知的高质量处理的图像。但是,现有的任务驱动的IQE模型倾向于忽略一个基本的事实 - 不同级别的视力任务具有不同的图像特征要求,有时甚至相互矛盾。为了解决这个问题,本文提出了针对医疗图像的任务驱动IQE的广义梯度促进(GradProm)培训策略。具体来说,我们将任务驱动的IQE系统分为两个子模型i。e。,一种用于图像增强的主流模型,也是视觉识别的辅助模型。在训练期间,GradProm仅使用视觉识别模型和图像增强模型的梯度更新图像增强模型的参数,但是只有当这两个子模型的梯度以相同的方向对齐时,这是通过其余弦相似性来衡量的。如果这两个子模型的梯度不在同一方向上,则GradProm仅使用图像增强模型的梯度来更新其参数。从理论上讲,我们已经证明了图像增强模型的优化方向不会被GradProm的实现下的辅助视觉识别模型偏差。从经验上讲,对四个公开但具有挑战性的医学图像数据集的广泛实验结果证明了Gradprom的表现优于现有最新方法。