Mandeep Kaur 1,Rahul Thour博士2 1研究学者部计算机科学与应用,Desh Bhagat University,Mandi Gobindgarh 2助理教授计算机科学和应用,德什·巴加特大学,曼迪·戈宾德加(Mandi Gobindgarh)摘要:脑部疾病是严重的疾病,不得不忽略,因为大脑失败会对整体健康构成重大威胁。早期检测和干预对于管理各种与大脑相关的疾病至关重要。检测脑肿瘤和其他神经系统问题的主要诊断方法之一是MRI成像。MRI是一种首选技术,由于其效率,实时成像功能和缺乏辐射。然而,诸如Speckle噪声,高斯噪声和其他工件之类的挑战继续损害MRI图像的质量。因此,提高图像质量对于准确的脑部疾病诊断至关重要。为了克服这些挑战,采用了各种成像技术来进行预处理,降低降噪和图像增强。从嘈杂的MRI数据中获得高质量图像的关键方法是图像恢复和增强。鉴于MRI的高频特性,脑部扫描中通常存在噪声。预处理通过应用过滤器消除噪声来改善图像质量中起着至关重要的作用。诸如Mean,Mentian,Wiener和其他过滤器之类的技术通常用于解决诸如Speckle,Salt和Pepper和Gaussian噪声之类的问题。关键字:大脑MRI成像,斑点噪声,高斯噪声,预处理,图像增强。这项研究提供了各种MRI图像预处理和增强技术的全面概述,概述了它们的目标和有效性。
2.6.1 几何校正、纠正和地理参考 2.6.2 图像增强 2.6.3 训练集选择 2.6.4 签名生成和分类 2.6.5 在 GIS 中创建/叠加矢量数据库 2.6.6 分类图像的验证 2.6.7 最终土地利用/植被覆盖图准备 3.0 土地利用/植被覆盖制图 18- 31 3.1 简介 3.2 土地利用/覆盖分类 3.3 数据分析 3.3.1 植被覆盖 3.3.2 采矿区 3.3.3 农业用地 3.3.4 荒地 3.3.5 定居点 3.3.6 水体 4.0 结论和建议 32-33
在本课程结束时,学生将能够: 1. 评估适合解决人工智能问题的图像处理技术。 2. 评估给定人工智能场景下图像处理方法的性能。 3. 在人工智能领域设计和开发图像处理系统 课程内容概要 本课程探讨解决人工智能问题的图像处理技术。图像形成和图像模型是涉及的初始步骤,它涵盖像素和对象级操作,包括直方图、边缘和片段。比较了图像增强和恢复。包括图像配准和图像变换操作。最后,给出图像特征和识别过程。包括计算机视觉的深度学习方法 评估和加权
深度学习显着提高了计算机视觉系统的性能,从对象识别到图像处理。本课程涵盖了计算机视觉中深度学习的基础知识和各种应用。学生将研究卷积神经网络以及经常性的神经网络的细节,并通过最终优化训练深层网络,并学习基于深度学习的方法,用于高级和低级计算机视觉任务,例如图像识别和图像增强。通过编程项目,学生将实施,训练和测试有关尖端计算机视觉研究的深神经网络。学生将被要求在与深度学习和计算机愿景有关的最终课程项目中学习或研究,并在课程结束前介绍他们的工作。
摘要 近年来,计算机技术和高等数学的发展使图像处理技术得以广泛应用。图像处理是一种利用数字计算机算法处理图像的多功能方法,其细节甚至比人眼的还要多。由于计算机视觉的进步,各种疾病都可以得到及时发现和治疗。在医学领域,更快的诊断等于更快的治疗过程,因此开发图像增强算法具有非常重要的意义,因为医学图像是在各种条件下生成的。医学图像最常见的问题是对比度低。因此,直方图均衡化是医学领域用于图像增强的最常用技术。由于每张图像都不同,因此应对每张图像使用单独的技术。在本报告中,我们将研究在计算机断层扫描中使用 CLAHE 是否有益处。
核医学成像诸如PET和SPECT之类的核医学成像被高噪声水平和低空间分辨率混淆,需要提高后建筑图像增强,以提高其质量和定量准确性。人工智能(AI)模型,例如卷积神经网络,U-NET和生成的对抗网络,在增强PET和SPECT图像方面表现出了令人鼓舞的结果。本评论文章对PET和SPECT图像增强的最先进的AI方法进行了全面调查,并试图确定该领域的新兴趋势。我们专注于基于AI的PET和SPECT Image DeNoising和Deblurring的最新突破。监督的深度学习模型在减少放射性示意剂剂量和扫描时间的情况下显示出很大的潜力,而无需牺牲图像质量和诊断精度。但是,这些方法的临床实用性通常受到它们对培训配对的清洁和损坏数据集的需求的限制。这激发了对无范围的替代方案的研究,这些替代方案可以通过仅依靠损坏的输入或未配对的数据集来培训模型来克服这一限制。这篇评论重点介绍了最近发表了针对基于AI的PET和SPECT图像增强的监督和无监督的努力。我们讨论了跨扫描仪和交叉协议培训工作,这可以极大地增强基于AI的图像增强工具的临床翻译性。我们还旨在解决一个迫在眉睫的问题,即AI模型产生的图像质量的改进是否导致了实际的临床收益。为此,我们讨论了针对任务特定的客观临床评估的作品,以对图像增强的AI模型或将临床指标纳入其损失功能,以指导图像生成过程。最后,我们讨论了新兴的研究方向,其中包括探索新颖的培训范式,更大的任务特定数据集的策展以及客观的临床评估,这将使未来这些模型的全部翻译潜力实现。
摘要 计算图像美学旨在设计算法方法来执行美学决策,就像人类一样。在过去的十五年里,由于大量带注释的数据集和深度学习方法的出现,计算美学经历了前所未有的发展,影响了从图像增强到推荐和检索等多媒体领域的许多应用。在本章中,我们首先概述了几个世纪以来美学的几种解释,并提出了一组适合计算美学方法分类的维度。然后,我们通过对最流行的数据集、基于手工特征的早期方法和使用深度神经网络的现代方法进行批判性分析,介绍了过去十年计算美学的进展。在本章的最后一部分,我们讨论了计算美学质量评估中的一些开放性挑战:处理分数的内在主观性,并提供可解释的美学预测。特别是,在本章中,我们强调了数据收集在计算美学中的重要性。
这项研究建立了一种从这种模拟中生成合成6D构成数据的管道,旨在使数据收集更具成本效益和高效。该研究涉及在工业环境中创建和评估在数字双数据集和建立域随机数据集[37]上训练的模型。调查结果表明,虽然数字双胞胎数据集在6D姿势估计管道(Mask r-CNN + GDR-NPP)中提供了与工业随机数据集的准确性好处,但如[45]和[38]中建议的真实图像与合成数据的集成在一起,但增强了准确性。在这项研究的范围内,观察到,在用真实图像增强时,在行业领域随机数据集中训练的模型表现出最高的准确性。实现这些进步,训练有素的模型的当前状态需要进一步的研究才能达到一致的工业机器人应用所需的可靠性。