数字图像的处理不断获得数量和相关性,对数据存储,传输和处理能力的需求不断增加。传输电子显微镜仪器的最新进展,尤其是在检测器技术中,已经推动了各种方式的数据生产。例如,如今,人们可以通过利用直接电子检测器[1]来想象最多生成200tb/hr,需要智能方法来提取科学有意义的信息。尽管在人工智能(AI)和机器学习(ML)方法的帮助下,显微镜数据解释取得了很多进展[1,2],但与增长的数据解释数据量相关的挑战仍然丰富。预计这将进一步加剧原位 /操作测量的气象升高以及数据挖掘,分析和其他计算需求的相关挑战。
数字图像的处理不断获得数量和相关性,对数据存储,传输和处理能力的需求不断增加。传输电子显微镜仪器的最新进展,尤其是在检测器技术中,已经推动了各种方式的数据生产。例如,如今,人们可以通过利用直接电子检测器[1]来想象最多生成200tb/hr,需要智能方法来提取科学有意义的信息。尽管在人工智能(AI)和机器学习(ML)方法的帮助下,显微镜数据解释取得了很多进展[1,2],但与增长的数据解释数据量相关的挑战仍然丰富。预计这将进一步加剧原位 /操作测量的气象升高以及数据挖掘,分析和其他计算需求的相关挑战。
彩色图像和不同的色彩空间。根据图像类型,我们可以讨论伪彩色处理(当颜色被分配灰度值时)或 RGB 处理(对于使用全彩色传感器获取的图像)。• 图像压缩和解压缩允许
1实施各种灰度转换以增强图像。2实施直方图均衡技术。3编写一个程序,以在输入图像上应用卷积过程以进行图像平滑。4实现定向梯度(HOG)的直方图进行特征提取。5编写一个程序,以在输入图像上应用比例不变特征变换。6实施视频中背景减法的框架差异技术。7实施主成分分析以计算特征向量以降低维度。8实施对象检测算法yolo。9实现R-CNN算法进行对象检测。10使用光流技术实施运动估计。11实现对象识别。12实现面部表达识别。
................................................ . ……………………………… …………………………………… .. 50
对数字图像处理方法的兴趣源于两个主要应用领域:改进人类解释的图形信息;以及用于存储,传输和自动机器感知表示的图像数据的处理。计算机数字图像技术是计算机应用程序纪律的非常重要的分支,其应用领域包括测量,计算机辅助设计,物理,三维模拟和其他行业。此外,随着计算机硬件性能的改善,图像处理算法改善了数字图像处理技术的应用。本评论文章重点介绍当前的数字图像处理技术及其在当今兴趣的医疗,森林保护和其他领域中的应用。