将数据驱动的机器学习与先验知识结合起来具有明显的先进的医学图像处理和分析。深度学习,由大型数据集和强大的GPU驱动,在图像重建,分割和疾病分类等任务中表现出色。但是,这些模型面临着诸如高资源需求,有限的概括和缺乏解释性之类的挑战。相比之下,模型驱动的方法可以更好地概括,可解释性和鲁棒性,但可能缺乏准确性和效率。结合这些范式可以利用其优势,有望提高性能并提高诊断准确性。该研究主题展示了这种整合如何增强医学成像,包括准确的中风发作估计,改进了COVID-19的诊断和恢复评估以及增强的心脏成像技术。这些进步突出了提高诊断准确性,治疗计划和医学成像中临床决策的潜力。Gao等人开发了卷积神经网络(CNN)。使用计算机断层扫描和灌注加权成像,在6小时内识别6小时内的急性缺血性中风患者进行血管血栓切除术。该CNN优于支撑载体机和随机森林,证明了其使用CT和MR成像的准确中风发作时间估计的潜力。Huang等人的另一项研究。利用深度学习和CT扫描来评估6个月内Covid-19 Delta变体幸存者中的肺恢复。与原始的COVID-19菌株相比,在大多数情况下,发现地面玻璃的不透明性消失和轻度纤维化,以及肺预后的改善。在类似的脉中,Bridge等人创建了混合效应的深度学习模型。从CT扫描中诊断COVID-19,可实现高准确性和鲁棒性。在外部验证中具有0.930的AUROC,此模型
摘要:每天,数以百万计的视力障碍挑战,面临着在家中的日常任务或没有帮助的困难。根据世界卫生组织(WHO)的说法,超过2.5亿人患有视觉障碍,大约3500万人完全盲目。这种人群遇到了世界泛滥的危险,即使在街道上越过,由于他们无法感知障碍和交通,因此甚至越过街道。尽管对独立性有强烈的渴望,但许多视觉障碍的人都取决于其他人的常规任务。但是,技术的进步,尤其是计算机视觉方面,为更大的自主权提供了希望。虽然传统的辅助工具,例如白色的甘蔗,导犬和专业软件是无价的,但新兴的创新旨在通过将视觉信息转化为声音来彻底改变感知。这些事态发展具有增强的自主权和安全性的希望,从而增强了视力障碍,以增加信心来驾驶世界。关键字:失明,视觉残障,援助,独立性。
Kush Vora Ninad Mehendale *计算机工程系电子系K.J Somaiya工程学院K.J.Somaiya工程学院孟买,印度孟买,印度kush.v@somaiya.edu ninad@somaiya.edu摘要 - 脑肿瘤是死亡的主要原因之一,因此,尽早诊断它们至关重要。 MRI是检测肿瘤的最有效诊断工具。 但是,热噪声,温度波动和其他伪影可能会产生嘈杂的MRI扫描,从而导致诊断不准确。 深度学习算法与图像处理技术结合使用,已在各种医学成像任务中有助于增强MRI图像。 我们的工作提出了一个带有两个编码器码头对的U-NET体系结构,用于降解MRI扫描,该扫描在通过注入合成高斯噪声生成的数据集上进行了细微的调整。 该模型将峰信号与噪声比(PSNR)从11.90提高到30.96。 提出的工作还提供了经验证据,表明拟议的deoising策略可将脑肿瘤的预测准确性提高近23%。 使用U-NET开发的去核技术将使放射科医生和计算机辅助诊断系统(CAD)在精确诊断疾病中通过产生清洁剂和更清晰的MRI扫描来使其受益。 关键字 - 图像增强,脱氧,U-NET,脑肿瘤,高斯噪声I. i ntroduction a脑肿瘤是一团异常的脑细胞。 封闭人脑的头骨非常坚硬,因此在这个紧密区域内的任何发展都会导致重大并发症。 随着这些肿瘤的生长,头骨内部的压力会增加,从而导致脑损伤。Somaiya工程学院孟买,印度孟买,印度kush.v@somaiya.edu ninad@somaiya.edu摘要 - 脑肿瘤是死亡的主要原因之一,因此,尽早诊断它们至关重要。MRI是检测肿瘤的最有效诊断工具。但是,热噪声,温度波动和其他伪影可能会产生嘈杂的MRI扫描,从而导致诊断不准确。深度学习算法与图像处理技术结合使用,已在各种医学成像任务中有助于增强MRI图像。我们的工作提出了一个带有两个编码器码头对的U-NET体系结构,用于降解MRI扫描,该扫描在通过注入合成高斯噪声生成的数据集上进行了细微的调整。该模型将峰信号与噪声比(PSNR)从11.90提高到30.96。提出的工作还提供了经验证据,表明拟议的deoising策略可将脑肿瘤的预测准确性提高近23%。使用U-NET开发的去核技术将使放射科医生和计算机辅助诊断系统(CAD)在精确诊断疾病中通过产生清洁剂和更清晰的MRI扫描来使其受益。关键字 - 图像增强,脱氧,U-NET,脑肿瘤,高斯噪声I. i ntroduction a脑肿瘤是一团异常的脑细胞。封闭人脑的头骨非常坚硬,因此在这个紧密区域内的任何发展都会导致重大并发症。随着这些肿瘤的生长,头骨内部的压力会增加,从而导致脑损伤。脑肿瘤分为两种不同类型。恶性(癌)和良性(非癌症)。这些肿瘤进一步分为原发性和继发性肿瘤(转移性肿瘤)。原发性脑肿瘤起源于大脑内部,但是当癌细胞从其他器官传播到大脑(肺部到大脑)时,转移性脑肿瘤就会发展。绝大多数原发性脑肿瘤都不癌。死亡率的第十个主要原因是脑肿瘤。在2020年,全球估计,有251,329人死于原发性恶性脑和中枢神经系统(CNS)肿瘤。今天在美国,估计有70万人受到原发性脑肿瘤的影响。这些肿瘤可能是致命的,并对生活质量产生重大影响。女性比男性更有可能获得任何类型的大脑或脊髓肿瘤,而男性则更有可能患上恶性肿瘤。这主要是因为某些类型的肿瘤在一种性别或另一种性别中更为普遍(例如,脑膜瘤在女性中更为常见)。患有恶性大脑或中枢神经系统肿瘤患者的5年生存率
为了解决普通相机收集引起的QR码识别问题,本文提出了基于图像处理的识别算法。整个过程,包括图像二进制,图像倾斜校正,图像方向,图像几何校正和图像归一化允许在不同的照明条件下收集的图像。实验表明,改进的方法可以提高二维代码和准确性的识别速度。qr,即“快速响应”代码是一个2D矩阵代码,它是通过考虑两个点(即与1D条形码相比,它必须存储大量数据,并且必须使用任何手持设备(如手机)在高速上解码。QR码提供高数据存储容量,快速扫描,全向可读性以及许多其他优点,包括错误校正(因此,也可以成功读取损坏的代码)和不同类型的版本。QR码符号的不同品种,例如徽标QR码,加密的QR代码,QR码,以便用户可以根据需要选择。现在,如今,在与营销,安全,学术界相关的不同应用程序流中应用了QR码。并以非常高的速度获得受欢迎程度。每天越来越多的人意识到这项技术并相应地使用它。QR码的普及随智能手机用户的增长而迅速增长,因此QR码在全球范围内迅速达到高水平的接受度。
摘要 —特征模仿网络 (FIN) 是一种神经网络,首先训练它们近似于闭式统计特征(例如熵),然后嵌入到其他网络中以增强其性能。在这项工作中,我们首次对 FIN 在生物医学图像处理任务中的应用进行评估。我们首先训练一组 FIN 来模仿六种常见的放射组学特征,然后比较较大网络(嵌入和不嵌入 FIN)在三个实验任务中的表现:从 CT 扫描中检测 COVID-19、从 MRI 扫描中分类脑肿瘤以及从 MRI 扫描中分割脑肿瘤。我们发现,与没有 FIN 的基线网络相比,嵌入 FIN 的模型在这三个任务中都提供了增强的性能,即使这些基线网络具有更多参数。此外,我们发现,与具有相似或更大表示能力的基线网络相比,嵌入 FIN 的模型收敛速度更快、更一致。我们的实验结果证明,FIN 可以为各种其他生物医学图像处理任务提供最先进的性能。
近年来,对自动货币识别和价值检测系统的需求不断增长,以简化现金处理和金融交易的过程。图像处理技术已成为自动化这些任务的有前途的方法。本文基于图像处理技术提供了有效的货币识别和价值检测系统。拟议的系统旨在自动化货币识别和价值检测过程,这在许多财务和零售应用程序中是必不可少的任务。该系统由几个阶段组成:图像采集,图像预处理,特征提取,图像增强和分类。系统使用多种图像处理算法,包括数据增强来增强输入图像的质量并提取相关功能。这些任务涉及确定银行票据或硬币的面额并确定其价值。实验的结果证明了拟议系统在现实世界情景中的有效性,这可以大大减少货币识别和价值检测所需的时间和精力。总而言之,在各种照明条件和方向下,提出的系统在识别不同的货币(包括钞票和硬币)方面达到了高准确性和鲁棒性。该系统的性能可以大大减少货币识别和价值检测所需的时间和精力,从而适合用于金融和零售应用程序。未来的工作将集中在更具挑战性的情况下,例如处理损坏或伪造的货币,以改善系统的性能。
摘要:数字全息显微镜(DHM)是一种广泛应用于生物、微电子和医学研究的3D成像技术。然而,3D成像过程中产生的噪声会影响医疗诊断的准确性。针对这一问题,提出了几种频域滤波算法。然而,所提出的滤波算法有一个局限性,即只有在直流(DC)频谱和边带之间的距离足够远时才能应用。针对这些限制,在提出的滤波算法中,HiVA算法和深度学习算法可以通过区分噪声和物体的详细信息来有效滤波,并且可用于实现与直流频谱和边带之间的距离无关的滤波。本文提出了一种深度学习技术与传统图像处理方法相结合的方法,旨在利用改进的去噪扩散概率模型(IDDPM)算法来降低3D轮廓成像中的噪声。
深度学习的兴起:卷积神经网络 (CNN) 等深度学习技术越来越多地用于图像分类、对象检测、分割等,这将巩固 Python 作为首选语言的主导地位。基于云的图像处理:随着向云计算的转变,Python 利用基于云的资源处理大规模图像处理工作负载的能力将成为一大优势。边缘计算:Python 适用于资源受限的环境,这使其成为边缘计算场景的关键,在这种场景中,图像处理任务在更靠近数据源的设备上执行。实时应用:Python 的效率和低延迟对于实时图像处理应用(如自动驾驶汽车、医学图像分析和增强现实)至关重要。可解释的人工智能和人机系统:随着对图像处理算法的透明度和可解释性的需求不断增长,Python 的可解释人工智能和人机系统工具将变得非常宝贵。
• Introduction to Image Processing • Digital Image Representation • Elements of an Image Processing System • Application Areas • Human visual system • Image formation • Sampling and quantity • Spatial resolution and depth of the image • Pixel Bethide Relationships • Image Routed • Image enhancement • Image Quality • Gray Scale Transformation • Image histogram • Correlation and Conduction Operations • Filtering in the Spatial Domain and Frequency • Image segmentation • Detection of Border Discontinuities •总体和本地限制性以及本地排序订单•图像表示和描述•数学形态•图像压缩•图像和放射性转换•放射线范围•图像之间的对应关系•图像分类•图像分类•图像肛门元素•标准和类和类标准标准•决策方法• Introduction to Image Processing • Digital Image Representation • Elements of an Image Processing System • Application Areas • Human visual system • Image formation • Sampling and quantity • Spatial resolution and depth of the image • Pixel Bethide Relationships • Image Routed • Image enhancement • Image Quality • Gray Scale Transformation • Image histogram • Correlation and Conduction Operations • Filtering in the Spatial Domain and Frequency • Image segmentation • Detection of Border Discontinuities •总体和本地限制性以及本地排序订单•图像表示和描述•数学形态•图像压缩•图像和放射性转换•放射线范围•图像之间的对应关系•图像分类•图像分类•图像肛门元素•标准和类和类标准标准•决策方法