Poldrack,Russell A. 1,Markiewicz,Christopher J. 1,Appelhoff,Stefan 2,Ashar,Yoni K. 3,Auer,Tibor 4,5,Baillet,Sylvain,Sylvain 6,Bansal,Bansal,Shashank 7,Shashank 7,Beltrachini,Beltrachini,Beltrachini,Leanar,Leanar,Benar,Christian G. 9,Bertazzoli,bertazzoli,bertazzoli,bertazzoli,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,1111 ,, ,Blair,Ross W. 1,Bortoletto,Marta 10,Boudreau,Mathieu 16,Brooks,Teon L. 1,Teon L. 1,Calhoun,Vince D. 17,Castelli,Castelli,Filippo Maria 18,19,Clement,Clement,Patricia 20,21,Cohen,Cohen,Cohen,Cohen,Alexander L.22 23,24,吉尔斯(De Hollander),吉尔斯(De Hollander),25,de la iglesia-vayá,玛丽亚26,de la vega,Alejandro 27,Delorme,Arnaud,28,Devinsky,Orrin 29,Draschkow,Draschkow,Dejan,Dejan 30,Duff,Duff,Eugene Paul 31,Dupre,Dupre,Elizabeth 1,Earlin,Erlin,Erlind 32 Illaume 34,Galassi,Anthony 32,Gallitto,Giuseppe 35,36,Ganz,Melanie 37,38,Gau,Rémi39,Gholam 39,Gholam,James 40,Ghosh,Satrajit S. 41,Giacomel,Giacomel,Giacomel,Alessio,Alessio,Alessio 42 44 , Gramfort, Alexandre 45 , Guay, Samuel 46 , Guidali, Giacomo 47 , Halchenko, Yaroslav O. 48 , Handwerker, Daniel A. 32 , Hardcastle, Nell 1 , Herholz, Peer 49 , Hermes, Dora 50 , Honey, Christopher J. 51 , Innis, Robert B. 32 , Ioanas, Horea-Ioan 48 , Jahn, Andrew 52 , Karakuzu, Agah 16 , Keator, David B. 53,54,55 , Kiar, Gregory 56 , Kincses, Balint 35,36 , Laird, Angela R. 57 , Lau, Jonathan C. 58 , Lazari, Alberto 59 , Legarreta, Jon Haitz 60 , Li, Adam 61 , Li, Xiangrui 62 ,Love,Bradley C. 63,Lu,Hanzhang 64,Marcantoni,Eleonora 65,Maumet,Camille 66,Mazzamuto,Giacomo67,Meisler 67,Meisler,Steven L. 68,Mikkelsen,Mikkelsen,Mark 69 4,75,Niso,Guiomar 76,Norgaard,Martin 32,37,Okell,Thomas W. 59,Oostenveld,Robert 77,78,Ort,Ort,Eduard 79,Park J. 80,Patrick J. 80,Pawlik,Pallik,Pallik,Mateusz,Mateusz 81,Pernet,Pernet,Pernet,Cyril R.38,Pestilli,Pestilli,Pestilli,Petilli,franco,Petr,Petr,Petr,Jan,Jan 272菲利普斯(Phillips),克里斯托夫(Christophe),83,派恩,让·巴蒂斯特(Jean-Baptiste)84,波罗尼尼(Pollonini),卢卡(Luca)85,86,拉马纳(Raamana),普拉德普·雷迪(Pradeep Reddy),里特(Ritter),佩特拉(Ritter),佩特拉(Petra)88,89,90,91,92,里佐(Rizzo) 99,Routier,Alexandre 100,Saborit-Torres,Jose Manuel 26,Salo,Taylor 101,Schirner,Michael 88,89,90,91,92,Smith,Smith,Robert E. 102,103,Spisak,Spisak,Spisak,Spisak,Tamas,Tamas 35,104,Sprenger,Sprenger,Julia,Julia 105,Swann,Swann,Swann,Swann,Nicole C. C. C. Nicole C. 106 , Szinte, Martin 105 , Takerkart, Sylvain 105 , Thirion, Bertrand 45 , Thomas, Adam G. 32 , Torabian, Sajjad 107 , Varoquaux, Gael 108 , Voytek, Bradley 109 , Welzel, Julius 110 , Wilson, Martin 111 , Yarkoni, Tal 112 , Gorgolewski, Krzysztof J. 1
了解神经系统的功能需要绘制其由功能,解剖学或基因表达定义的其组成细胞的空间分布。最近,组织制备和显微镜的发展使整个啮齿动物大脑都可以成像细胞种群。但是,手动映射这些神经元很容易偏见,并且通常不切实际。在这里,我们提出了一种开源算法,用于使用标准台式计算机硬件在鼠标全脑显微镜图像中完全自动化的3D检测神经元somata。我们通过绘制通过通过逆行反式突触病毒感染表达的细胞质荧光蛋白标记的大型细胞的大脑范围来证明我们方法的适用性和功能。
摘要。疾病进展模型对于理解退行性疾病至关重要。混合效应模型一直用于模拟临床评估或从医学图像中提取的生物标志物,允许在任何时间点进行缺失数据的填补和预测。然而,这种进展模型很少用于整个医学图像。在这项工作中,变分自动编码器与时间线性混合效应模型相结合,以学习数据的潜在表示,使得各个轨迹随时间遵循直线,并以一些可解释的参数为特征。设计了一个蒙特卡罗估计器来迭代优化网络和统计模型。我们将此方法应用于合成数据集,以说明时间依赖性变化与受试者间变异性之间的分离,以及该方法的预测能力。然后,我们将其应用于来自阿尔茨海默病神经影像计划 (ADNI) 的 3D MRI 和 FDG-PET 数据,以恢复大脑结构和代谢改变的详细模式。
Abramian, D., & Eklund, A. (2019)。Refacing:使用 GAN 重建匿名面部特征。2019 年 IEEE 第 16 届国际生物医学成像研讨会 (ISBI 2019) 上发表的论文,1104 – 1108。https://doi.org/10.1109/ISBI.2019.8759515 Bishop, DVM (2016)。开放式研究实践:意想不到的后果以及避免这些后果的建议。(对同行评审开放倡议的评论)。 Royal Society Open Science,3 (4),160109。https://doi.org/10.1098/rsos.160109 de Sitter, A., Visser, M., Brouwer, I., Cover, KS, van Schijndel, RA, Eijgelaar, RS … Vrenken, H. (2020)。神经影像中的隐私问题:删除面部特征会降低图像分析方法的性能。欧洲放射学,30 (2),1062 – 1074。https://doi.org/10. 1007/s00330-019-06459-3 Duan, D., Xia, S., Rekik, I., Wu, Z., Wang, L., Lin, W., … Li, G. (2020)。基于皮质的个体识别和个体变异分析
摘要图像数据的增强构成了现代计算机视觉任务中的一种关键方法,因为它可以促进增强培训的多样性和质量;从而提高下游任务中机器学习模型的性能和鲁棒性。并行,增强方法也可以用于以上下文和语义感知方式编辑/修改给定图像。扩散模型(DMS)构成了生成人工智能(AI)领域中最新且高度有前途的方法之一,它已成为图像数据增强的强大工具,能够通过学习潜在的数据分布来生成现实且多样化的图像。当前的研究实现了对基于DM的图像增强方法的系统,全面和深入的评论,涵盖了广泛的策略,任务和应用。尤其是对DMS的基本原理,模型架构和培训策略的全面分析。随后,对相关图像增强方法的分类法进行了研究,重点是有关语义操纵,个性化和适应的技术,以及特定于应用程序的增强任务。然后,分析了绩效评估方法和各自的评估指标。最后,讨论了当前的挑战和未来的研究方向。
被证明是耗时且成本密集的,用于培训机器学习模型的标记图像数据(Assadzadeh等人。2022)。由于现代游戏发动机的几乎现实渲染(Pavelka and Landa,2024),它们的使用代表了一种可能具有成本效益且节省时间的标签图像数据的替代方法。在本主题的论文中,游戏引擎的适用性以虚幻引擎为例测试。为此,开发了一般的工作流程,该工作流程可以自动化空间数据以供游戏引擎中使用,从而可以简单地创建游戏引擎中的图像和标签,并通过修改数据来确保随后进一步工作。目的是提供可直接用于培训机器学习模型的数据。
我们介绍了Biotrove,这是旨在推进生物多样性应用程序的最大公共访问数据集。Biotrove从Intaturist平台策划,并审查仅包括研究级数据,包含16190万张图像,提供了三个主要王国的前所未有的规模和多样性:Animalia(“动物”),真菌(“ Fungi”),“ Fungi”)和parterae(“植物”),跨越了大约366.6k种。每个图像都用科学名称,分类层次结构和通用名称注释,可提供丰富的元数据,以支持各种物种和生态系统跨越准确的AI模型开发。我们通过释放一套使用4000万个字幕图像的子集(称为Biotrove-Train)训练的剪辑模型来证明Biotrove的价值。This subset focuses on seven categories within the dataset that are underrepresented in standard image recognition models, selected for their critical role in biodiversity and agriculture: Aves ("birds"), Arachnida ("spiders/ticks/mites"), Insecta ("insects"), Plantae ("plants"), Fungi ("fungi"), Mollusca ("snails"), and Reptilia (“蛇/蜥蜴”)。为了支持严格的评估,我们介绍了几个新的基准测试和报告模型的准确性,以跨生活阶段,稀有物种,混杂物种和多种分类学水平进行零拍学习。我们预计生物群将刺激AI模型的开发,这些模型支持用于害虫控制,作物监测,生物多样性评估和环境保护的数字工具。这些进步是确保粮食安全,保存生态系统并减轻气候变化影响的范围。Biotrove公开可用,易于访问,并准备立即使用。
– 奥地利航天局 (ASA)/奥地利。 – 比利时联邦科学政策办公室 (BFSPO)/比利时。 – 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。 – 中国卫星发射和跟踪控制总院、北京跟踪和通信技术研究所 (CLTC/BITTT)/中国。 – 中国科学院 (CAS)/中国。 – 中国空间技术研究院 (CAST)/中国。 – 英联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 丹麦国家空间中心 (DNSC)/丹麦。 – 航空航天科学和技术部 (DCTA)/巴西。 – 电子和电信研究所 (ETRI)/韩国。 – 欧洲气象卫星应用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 地理信息和空间技术发展局 (GISTDA)/泰国。 – 希腊国家空间委员会 (HNSC)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 空间研究所 (IKI)/俄罗斯联邦。 – 韩国航空宇宙研究院 (KARI)/韩国。 – 通信部 (MOC)/以色列。 – 穆罕默德·本·拉希德航天中心 (MBRSC)/阿拉伯联合酋长国。 – 国家信息和通信技术研究所 (NICT)/日本。 – 国家海洋和大气管理局 (NOAA)/美国。 – 哈萨克斯坦共和国国家空间局 (NSARK)/哈萨克斯坦。 – 国家空间组织 (NSPO)/中国台北。 – 海军空间技术中心 (NCST)/美国。 – 粒子与核物理研究所 (KFKI)/匈牙利。 – 土耳其科学技术研究委员会 (TUBITAK)/土耳其。 – 南非国家航天局 (SANSA)/南非共和国。 – 空间和高层大气研究委员会 (SUPARCO)/巴基斯坦。 – 瑞典空间公司 (SSC)/瑞典。 – 瑞士空间办公室 (SSO)/瑞士。 – 美国地质调查局 (USGS)/美国。
牲畜具有很高的经济价值,并且经常在大型农场中对其进行监测是一项劳动密集的任务,而且昂贵。关于单个动物及其周围环境的智能数据的出现为早期发现和预防疾病,更好的动物护理和可追溯性,更好的可持续性和农场经济学开辟了新的机会。精确的牲畜农业(PLF)依靠牲畜数据的恒定和自动收集来支持农民,兽医和当局做出的专业知识和管理决定。无人机的高流动性与高水平的自主权,传感器驱动的技术和AI决策能力相结合可以为农民提供许多优势,从而利用大型农场的每个角落利用即时信息。这项研究的主要目标是i)探索各种基于无人机的基于视觉的遥感模式,尤其是视觉带感应和热成像仪,ii)ii)ii)ii)ii)ii)ii)ii)收集具有各种参数的数据,ii)ii)与研究人员建立良好的高级式富有融合式融合式融合式融合式融合的方法,以建立各种参数方式。收集的数据表明,可以利用从多种传感器模式获得的牲畜的独特特征的融合,以帮助农民通过PLF在大型农场中体验更好的牲畜管理。
抽象目的 - 人类正在走向不朽的生活吗?如果是这样,哪些社会领域在实现这一目标中发挥了积极作用?为了理解这一点,该研究探讨了永生与健康和医疗旅游业之间的关系,以寻求它们之间的潜在关系,并最终询问有关这些旅游部门增长的困难问题,以及对他们进行更大监管的潜在需求。设计/方法论/方法 - 采用务实的哲学方法,并通过检查次要来源以及已发表的材料和报告的精致信息,该研究介绍了原始的理论知识以及探索旅游业和人类永生的模型。调查结果 - 本文认为,当今健康和医疗市场的持续增长可能导致一个世界,在我们的世界中,人类主义者和半机器人都在我们的世界中,甚至从智人接管。该研究提出了一个模型,强调了健康和医疗旅游市场的潜在作用,这说明了未来消费者服务的潜力,这些服务可能会进一步推动寻找永生的搜索。因此,这种市场和消费者的欲望是如何(在)直接支持人文对(非人类)不朽生存的渴望的。独创性/价值 - 如今,个人受到健康实践,医疗和化妆品的驱动,并愿意环游世界,以寻找能够执行所需程序或寻求价格更便宜的公司。这项研究提供了对这些复杂关系的新见解,并绘制了健康与医疗实践之间的隶属关系以及不朽的概念。