摘要图像数据的增强构成了现代计算机视觉任务中的一种关键方法,因为它可以促进增强培训的多样性和质量;从而提高下游任务中机器学习模型的性能和鲁棒性。并行,增强方法也可以用于以上下文和语义感知方式编辑/修改给定图像。扩散模型(DMS)构成了生成人工智能(AI)领域中最新且高度有前途的方法之一,它已成为图像数据增强的强大工具,能够通过学习潜在的数据分布来生成现实且多样化的图像。当前的研究实现了对基于DM的图像增强方法的系统,全面和深入的评论,涵盖了广泛的策略,任务和应用。尤其是对DMS的基本原理,模型架构和培训策略的全面分析。随后,对相关图像增强方法的分类法进行了研究,重点是有关语义操纵,个性化和适应的技术,以及特定于应用程序的增强任务。然后,分析了绩效评估方法和各自的评估指标。最后,讨论了当前的挑战和未来的研究方向。
不幸的是,OMERO 无法看到已存储在 RDM 上的文件,它只能看到通过 Insight Uploader 上传的文件(OMERO.Insight 应用程序中的蓝色向上箭头)。对于通过 OMERO 组织/共享数据的用户,已存储在 RDM 中的文件需要通过 Insight 再次上传,从而有效地复制数据。
。CC-BY 4.0 国际许可 它是永久可用的。 是作者/资助者,已授予 medRxiv 许可以在(未经同行评审认证)预印本中显示预印本 此版本的版权所有者于 2021 年 10 月 3 日发布。;https://doi.org/10.1101/2021.10.01.21264290 doi:medRxiv 预印本
图 2.5 激活函数:(a)S 型函数,(b)双曲正切函数,(c)整流线性单位函数,(d)泄漏整流线性单位函数。......................................................................................................................... 18
正射影像被广泛认为是各种专题制图应用的数据源;在欧盟 (EU),管理共同农业政策的信息系统目前通常基于数字正射影像覆盖,其标称几何质量为 1:10,000 地图比例尺等效和 1m 像素大小或更高 (Kay et al., 1997)。尽管如此,机载图像采集需要一定程度的访问权限,而这并不总是可行的,而所谓的“非常高分辨率”(VHR) 卫星传感器的可用性允许采集具有图像内容质量特征的数据,以满足农村地区或农业制图和监测的需求 (Petrie, 2002)。目前使用 QuickBird 和 IKONOS 数据生成正射影像的主要方法有三种:严格的传感器模型(例如,Toutin 和 Cheng,2003)、使用地面控制点计算的有理多项式系数 (RPC) 方法,或使用影像供应商提供的 RPC 信息。前两种
正射影像被广泛认为是各种专题制图应用的数据源;在欧盟 (EU),管理共同农业政策的信息系统现在通常基于数字正射影像覆盖,其标称几何质量为 1:10,000 地图比例尺当量和 1m 像素大小或更高 (Kay et al., 1997)。尽管如此,机载图像采集需要一定程度的访问,而这并不总是可行的,而所谓的“非常高分辨率”(VHR) 卫星传感器的可用性允许采集具有图像内容质量特征的数据,以满足农村地区或农业制图和监测的需求 (Petrie, 2002)。目前使用三种主要方法从 QuickBird 和 IKONOS 数据生成正射影像:严格的传感器模型(例如,Toutin 和 Cheng,2003)、使用地面控制点计算的有理多项式系数 (RPC) 方法或使用影像供应商提供的 RPC 信息。前两种
摘要:量子计算有望在未来从根本上改变计算机系统。最近,量子计算的一个新研究课题是机器学习的混合量子-经典方法,其中参数化的量子电路(也称为量子神经网络 (QNN))由经典计算机优化。这种混合方法可以兼具量子计算和经典机器学习方法的优点。在这个早期阶段,了解量子神经网络对不同机器学习任务的新特性至关重要。在本文中,我们将研究用于对图像进行分类的量子神经网络,这些图像是高维空间数据。与以前对低维或标量数据的评估相比,我们将研究实际编码类型、电路深度、偏置项和读出对流行 MNIST 图像数据集的分类性能的影响。通过实验结果获得了关于不同 QNN 学习行为的各种有趣发现。据我们所知,这是第一项考虑图像数据的各种 QNN 方面的工作。
对实验伪影和噪声敏感,从而降低了它们对具有相似定位但不同对比度的空间模式的泛化能力。最近,使用卷积神经网络 (CNN) 的迁移学习和半监督深度学习方法已经开发出来,分别用于聚类离子图像和量化分子共定位。26,27 这些报告表明,MSI 数据的有限大小对传统的 CNN 训练框架提出了挑战,因为传统的 CNN 训练框架通常依赖于大量带注释的图像。因此,这些方法与传统的机器学习方法相比,在查找共定位分子图像方面提供了相对较小的改进。计算机视觉自监督对比学习方法的最新进展,包括 MoCo、28 SimCLR 29
摘要:糖尿病是全球最常见的疾病之一,近年来已成为对人类日益全球化的威胁。但是,糖尿病的早期检测极大地抑制了疾病的进展。这项研究提出了一种基于深度学习的新方法,用于早期检测糖尿病。与许多其他医学数据一样,研究中使用的PIMA数据集仅包含数值值。从这个意义上讲,流行的卷积神经网络(CNN)模型在此类数据中的应用是有限的。这项研究将数值数据转换为图像,基于特征的重要性,用于在早期糖尿病诊断中使用CNN模型的强大表示。然后将三种不同的分类策略应用于所得的糖尿病图像数据。在第一个中,糖尿病图像被送入RESNET18和RESNET50 CNN模型中。在第二个重新网络模型的深度特征中被融合并与支持向量机(SVM)进行分类。在最后的方法中,选定的融合特征由SVM分类。结果证明了糖尿病早期诊断中糖尿病图像的鲁棒性。
摘要。疾病进展模型对于理解退行性疾病至关重要。混合效应模型一直用于模拟临床评估或从医学图像中提取的生物标志物,允许在任何时间点进行缺失数据的填补和预测。然而,这种进展模型很少用于整个医学图像。在这项工作中,变分自动编码器与时间线性混合效应模型相结合,以学习数据的潜在表示,使得各个轨迹随时间遵循直线,并以一些可解释的参数为特征。设计了一个蒙特卡罗估计器来迭代优化网络和统计模型。我们将此方法应用于合成数据集,以说明时间依赖性变化与受试者间变异性之间的分离,以及该方法的预测能力。然后,我们将其应用于来自阿尔茨海默病神经影像计划 (ADNI) 的 3D MRI 和 FDG-PET 数据,以恢复大脑结构和代谢改变的详细模式。