相机放置在相机支架上,该支架牢固地固定在飞机的机身上。支架具有隔振器,可吸收飞行中飞机固有的振动。振动会使图像模糊,并降低图片的可解释性。此外,支架还具有万向节系统,使摄影师能够适应飞机的俯仰和偏航并补偿航向。由于风的原因,飞机通常必须将航向稍微转向侧风以保持恒定的飞行方向。航向和实际飞行方向之间的差异称为偏航角。消除偏航可获得与飞行方向正确定向的图像,这是摄影测量任务所必需的。
在快速 MRI 成像中,B 0 不均匀性会导致非线性图像失真(例如,对于 EPI)或图像模糊(例如,对于螺旋采集)。5 对于 CEST,B 0 不均匀性会引起频率偏移 6 ,这会导致量化中的系统误差。体内 MRI 检查对受试者的运动很敏感。那些具有长 MRI 序列或重复次数较多的 MRI 检查尤其容易受到受试者运动的影响。7,8 受试者位置的变化不仅经常通过 k 空间不同部分之间的不一致直接导致运动伪影,而且还会通过由位于磁化率差异很大的组织(例如脑组织、骨组织和空气)之间的磁化率界面处的源引起的局部场扰动的位置变化导致 B 0 场的均匀性降低而间接导致运动伪影。9,10
在快速 MRI 成像中,B 0 不均匀性会导致非线性图像失真(例如,对于 EPI)或图像模糊(例如,对于螺旋采集)。5 对于 CEST,B 0 不均匀性会引起频率偏移 6 ,这会导致量化中的系统误差。体内 MRI 检查对受试者的运动很敏感。那些具有长 MRI 序列或重复次数较多的 MRI 检查尤其容易受到受试者运动的影响。7,8 受试者位置的变化不仅经常通过 k 空间不同部分之间的不一致直接导致运动伪影,而且还会通过由位于磁化率差异很大的组织(例如脑组织、骨组织和空气)之间的磁化率界面处的源引起的局部场扰动的位置变化导致 B 0 场的均匀性降低而间接导致运动伪影。9,10
摘要:生成对抗网络(GAN)已转换了图像合成的领域,尤其是在引入条件gan(CGAN)(CGAN)的引入中,通过在整个生成过程中整合额外信息,从而允许更自定义的方法。模糊图像的存在可能会对图像质量产生不利影响,并可能阻碍随后的图像处理活动。为了对抗图像模糊,我们引入了一种新型的单像模糊去除技术,该技术依赖于条件生成的对抗网络(CGAN)。在这种方法中,CGAN充当基本框架,将模糊的图像作为补充条件数据并实施Lipschitz的约束。通过有条件的对抗损失,内容损失和感知损失的组合来培训网络体系结构,以纠正模糊区域并重建图像。通过实验评估,很明显,所提出的方法在删除模糊方面优于现有算法,在保持图像清晰度的同时有效地减少了模糊性。