本文介绍的系统背后的主要目标是研究使用虚拟现实(VR)展示相当大的医疗设备的功效。具体来说,我们专注于安装在卡车拖车上的移动磁共振成像(MRI)扫描仪。后者是移动MRI设置不可或缺的一部分,必须作为身临其境体验的一部分呈现。因此,我们不仅必须描绘医疗机构,而且还提供了理解周围环境的手段。这对放射科医生和其他医务人员尤其重要,以确定给定的移动医疗机构是否满足了他们的需求和需求。此外,尽管使用此类MRI设备设计用于机动性,但它们的长途运输可能会耗时,麻烦且昂贵。因此,我们可以观察到需要展示此类移动MRI单元而没有与运输相关的额外费用和负担。为了实现这一目标,我们设计了一个沉浸式的环境,在该环境中,用户可以与移动MRI的现实生活量表3D模型进行交互。此外,我们还使用已建立的启发式方法验证了系统的可用性和表现力。
安全加强学习(SRL)旨在优化最大程度地提高长期奖励的控制政策,同时遵守安全限制。SRL具有许多现实世界的应用,例如自动驾驶汽车,工业机器人技术和医疗保健。离线增强学习(RL)的最新进展 - 代理商在不与环境互动的情况下从静态数据集中学习政策 - 已成为一种有希望的方法来得出安全控制策略。但是,离线RL面临着重大挑战,例如数据中的协变量转移和离群值,这可能导致次优政策。同样,在线SRL通过实时环境互动得出安全的政策,与异常值进行斗争,并且通常依靠不切实际的规律性假设,从而限制了其实用性。本文通过提出一种混合访问线路方法来解决这些挑战。首先,离线学习指南在线探索的先验知识。然后,在在线学习过程中,我们用Student-T的流程(TP)替换流行的高斯流程(GP),以增强协变速器和异常值的鲁棒性。
在多发性硬化症 (MS) 中,脑损伤程度、解剖位置、形状和变化是帮助医学研究人员和临床医生了解疾病时间模式的重要方面。纵向 MS 数据的交互式可视化可以支持旨在探索性分析病变和健康组织拓扑的研究。现有的可视化包括条形图和汇总指标,例如绝对数字和体积,以总结病变随时间的变化轨迹,以及体积变化等汇总指标。这些技术可以很好地用于具有双时间点比较的数据集。对于频繁的后续扫描,如果没有合适的可视化方法,很难从多模态数据中理解模式。作为一种解决方案,我们提出了一个可视化应用程序,其中我们通过适用于大型时间序列数据的交互式可视化来展示病变探索工具。除了各种体积和时间探索设施外,我们还包括一个交互式堆叠面积图,其中包含其他集成功能,可以比较病变特征,例如强度或体积变化。我们从自动病变跟踪中获取纵向可视化的输入数据。对于有大量随访的病例,我们的可视化设计可以提供有用的摘要信息,同时允许医学研究人员和临床医生研究较低粒度的特征。我们通过与领域专家的评估展示了我们的可视化在模拟数据集上的实用性。© 2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
在基于等离子的设备中,纳米结构的金属选择通常会导致AG的出色性能或AU稳定性之间的不良权衡。以一种保留其有利特性的方式将AU和AG组合在一起,同时还利用协同效应来增强表面增强的拉曼散射(SERS)性能,超出了单个金属的能力。为了解决这个问题,使用基于电流替代的大区域纳米制造程序来创建具有多种形态和高度可调(通过可见的NIR)等离子体共振的混合体Au-ag纳米岛。他们的稳定性进行了全面研究,并证明是复杂的。但是,在正确的条件下,制造了具有银色等离子特性的Au-Ag纳米群岛,并在至少5个月内显示出稳定。此外,他们的SER效率甚至超过了Ag纳米群岛的效率。计算调查帮助解释了有利的属性,并为将来的传感器设计提供了见解。在纳摩尔范围内和轻度条件(低激光功率)中实现了模型分子的检测,这表明生物医学传感的潜力很大。超越
1 scanning electron microscopy reveals How plasma differentially ablates biopolymers and modifies surface characteristics of wood wodal laabar 1, Dr da Huo 2, Dr Philip David Evans 3, Arash Jamali 4 1 Laboratory of Reactivity and Solid Chemistry (LRCS), CNRS UMR7314, University of Picardy Jules Verne, Amiens, France, 2 Laboratory of反应性和固体化学(LRC),CNRS UMR7314,Picardy Jules University jules Verne,法国,法国,法国3号,3木科学系,不列颠哥伦比亚大学,加拿大温哥华,4个电子显微镜平台,Picardy Jules Veresne,Amiens,Amiens,Amiens,France 2 2 2 2,bt [2 2 2,b-BT] (1,2.3-三唑-4-基)吡啶]模式。niamh o'shea 1 1 1 1化学和三位一体生物医学学院,都柏林三一学院,都柏林,爱尔兰,爱尔兰2号琥珀中心,克兰恩,都柏林三一学院,都柏林,爱尔兰3纳米伯斯和纳米结构和纳米结构,vs₂,ws₂和mos₂,莫斯·巴尔·萨德·贝尔·萨德·贝尔德,啤酒。以色列舍娃4人体液中的4蛋白成像,以了解阿尔茨海默氏病的进展彼得·尼尔玛拉(Peter Nirmalraj)1,托马斯·施耐德(Thomas Schneider)先生2,安斯加斯·施耐德(Thomas Schneider)先生,安斯加尔·费尔贝克(Ansgar Felbecker)2 1 1 empa,苏黎世瑞士,苏黎世瑞士,2 kssg,2 kssg,2 kssg,st kssg,st gallen,st gallen,switzerland 5钻石量子量的量子,以降级为量子,以量子的量化量子,以量子的量化量子,以量子的量子降低了活性,该量子量有现年量子的固定量。 Elias-llumbet,Aldona Mzyk夫人,Claudia Reyes San Martin女士,Nuan Lin夫人,Romana Schirhagl 1大学,大学医学中心Groningen,Groningen,荷兰6各向异性3-D-D DIRAC,用于设计Terahertz Sensing Nanotennas Kelvin J.部门。A. Ooi 1 1 Xiamen University Malaysia, Sepang, Malaysia 7 EELS Compton scattering and the electronic structure of twisted WS2 bi-layers Alina Talmantaite 1 , Yaoshu Xie 2 , Assael Cohen 3 , Pranab Mohapatra 3 , Ariel Ismach 3 , Teruyasu Mizoguchi 2 , Stewart Clark 1 , Budhika Mendis 1 1 Dept of物理学,达勒姆大学,英国,2工业科学研究所,日本东京大学,3 3。材料科学与工程,以色列,以色列8的材料科学与工程学作用,语音子和等离子体非弹性散射在bragg衍射束强度上的作用Budhika Mendis 1 1 1 1物理学,英国达勒姆大学,UK 9电化学液化液化和INTORERY SERVENION INTRERIGHT IN INTRORIGH INTRERIGHTZ时Z ZHIYUUAN INTRONIDER SERVICATION INTRORIAN LITHIUM INTERICAL和INTORRIPHAN INTORRIPAL INTORERIG香港城市大学海洋污染实验室,香港10开发电子显微镜的生物学样本制备方法,使用三明治冰冻技术Masashi Yamaguchi 1,Azusa tokahasi-nakaguchi博士
目标:早期检测到心血管疾病(CVD)可以进行治疗,并显着降低死亡率。传统上,由于其成本率和简单性,因此使用Phoncartiogram(PCG)信号来检测心血管疾病。尽管如此,各种环境和生理噪声经常会产生PCG信号,从而损害了它们的基本独特特征。在人满为患和受资源受限的医院中,此问题的普遍性可能会损害医学诊断的准确性。因此,本研究旨在发现使用嘈杂的心脏声音信号检测CVD的最佳转换方法,并提出一个噪声强大的网络,以改善CVDS分类。方法:为了鉴定嘈杂心脏声音数据的最佳变换方法MEL频率cepstral coe ffi cients(MFCC),短期傅立叶变换(STFT),常数Q非组织Gabor Transform(CQT)和连续的Wavelet Transform(CWT)已与VGGGGG一起使用。此外,我们提出了一种新型的卷积复发性神经网络(CRNN)结构,称为噪声鲁棒有氧运动(NRC-NET),该结构是一个轻巧的模型,用于对二尖瓣反流,主动脉狭窄,二位骨狭窄,二尖瓣膨胀,二尖瓣脱垂和使用PCG的正常心脏的声音和随机呼吸的正常心脏的声音和正常呼吸道抗衡。包括一个注意块,以从嘈杂的腐败心脏声音中提取重要的时间和空间特征。结果:这项研究的结果表明,CWT是最佳转换