粒子加速器物理与建模 II 2V 1U 加速器将被视为一个抽象的动态系统,我们将讨论非线性对带电粒子束动力学的影响。我们将介绍 Lie 方法与微分代数 (DA) 和截断幂级数 (TPS) 的结合。在第二部分中,我们将讨论使用神经网络和多项式混沌展开来构建此类非线性动态系统的替代模型。
本文在过去五十年中通过拉曼光谱法对石墨烯中缺陷计量的演变提供了历史记录。将拉曼散射应用于石墨材料中疾病水平的研究可以追溯到1970年代,并且在该领域发生了很大的进步,尤其是在2006年分离石墨烯之后。文章开始介绍与结构缺陷有关的物理学,破坏了晶体固体中的翻译对称性,引入了拉曼光谱中的选择规则的放松,该规则表现为被障碍引起的峰值,然后将其估计为重要的里程碑,并提供了主要现有协议的实际摘要。此外,我们探讨了尖端增强的拉曼光谱法对石墨烯材料中缺陷的基本方面的更深入了解,这是由于其具有高空间分辨率的光谱测量的能力。总而言之,我们概述了这种创新技术进一步利用这种创新技术的前景,以增强石墨烯缺陷的科学和计量及其在其他二维系统中的应用。
探索人脑的复杂结构对于理解大脑功能和诊断脑部疾病至关重要。得益于神经成像技术的进步,一种新方法已经出现,该方法涉及将人脑建模为图结构模式,其中不同的大脑区域表示为节点,这些区域之间的功能关系表示为边。此外,图神经网络(GNN)在挖掘图结构数据方面表现出显着优势。开发 GNN 来学习脑图表征以进行脑部疾病分析最近引起了越来越多的关注。然而,缺乏系统的调查工作来总结该领域的当前研究方法。在本文中,我们旨在通过回顾利用 GNN 的脑图学习工作来弥补这一空白。我们首先介绍基于常见神经成像数据的脑图建模过程。随后,我们根据生成的脑图类型和目标研究问题对当前的作品进行系统分类。为了让更多感兴趣的研究人员能够接触到这项研究,我们概述了代表性方法和常用数据集,以及它们的实现来源。最后,我们介绍了对未来研究方向的见解。本次调查的存储库位于 https://github.com/XuexiongLuoMQ/Awesome-Brain-Graph-Learning-with-GNNs。
本文所含信息被认为是可靠的,但对其准确性、特定应用的适用性或将获得的结果不作任何形式的陈述、保证或担保。这些信息通常基于使用小型设备的实验室工作,并不一定表明最终产品的性能或可重复性。所介绍的配方可能未经稳定性测试,应仅用作建议的起点。由于商业上用于处理这些材料的方法、条件和设备各不相同,因此不保证或担保产品是否适用于所披露的应用。全面测试和最终产品性能是用户的责任。对于超出 Lubrizol Advanced Materials, Inc. 直接控制范围的任何材料的使用或处理,Lubrizol Advanced Materials, Inc. 不承担任何责任,客户承担所有风险和责任。卖方不作任何明示或暗示的保证,包括但不限于对适销性和特定用途适用性的暗示保证。本文所载内容不得视为未经专利所有者许可而实施任何专利发明的许可、建议或诱因。路博润先进材料公司是路博润公司的全资子公司。- ©2022 路博润公司,保留所有权利。所有商标均为路博润公司的财产。路博润公司是伯克希尔哈撒韦公司的一家公司。22-0118344