我们目前对导致 GA 进展的原因以及如何预测其生长(即其进展)的理解仍然有限,测量病变大小的策略在人力资源方面既缓慢又昂贵。人工智能 (AI) 过去曾广泛用于基于电子健康记录的“大数据”分析,最近,AI 方法已扩展到筛查视网膜图像,随后在诊断中显示出希望。12 基于 AI 的分析的一个优点是它可以非常快速且经济高效地评估兆字节数据。13 AI 系统可以以比人类更高的分辨率和更大的带宽区分图像特征和颜色,因此可以增强信息发现过程。14 AI 还可以将临床信息与诊断图像中出现的特征相结合,以提高分类准确性。15 这在放射学和皮肤病学中很明显,它们已经成为基于 AI 的诊断研究的主题,并取得了令人鼓舞的结果。13
经典实验(尽管有很多)导致经典力学被揭穿,但这些实验都与光是粒子还是波的问题有关。如果你考虑一个相干光源,并将一束光穿过两个小缝,看看会发生什么,你会发现干涉图样。如果光是波,而两个小缝产生了两个波源,它们可以建设性地相加或解构性地抵消,那么这就是你所期望的。因此,可以观察到干涉图样。好吧,光是波。让我们对电子做同样的事情。我们会发现同样的情况!向双缝发射电子束也会产生干涉图样。因此,电子(否则看起来像是带有固定电荷的点状粒子)也会像波一样表现(类似地,有光电效应等实验表明光表现得像粒子)。即使你放慢光束速度,一次释放一个电子,这种干涉图样仍然会存在。
声子的探测对于研究共振耦合的磁振子与声子的相互转化至关重要。本文我们报道了通过微聚焦布里渊光散射在 Ni/LiNbO 3 混合异质结构上直接可视化磁振子和声子的共振耦合。表面声子的静态图样源于入射波 𝜓 0 (𝐴 0 , 𝒌, 𝜑 0 ) 与反射波 𝜓 1 (𝐴 1 , −𝒌, 𝜑 1 ) 之间的干涉,由于磁振子-声子耦合,磁场可以调制表面声子的静态图样。通过分析从布里渊光谱中获得的声子信息,可以确定磁振子系统(Ni 薄膜)的性质,例如铁磁共振场和共振线宽。该结果提供了关于耦合磁振子-声子系统中声子操控和检测的空间分辨信息。
(111) 注册号 (141) 注册失效 (151) 注册日期 (156) 续展日期 (210) 申请号 (220) 申请日期 (300) 优先权信息(日期、国家、参考编号) (390) 在本国注册的信息 (450) 公布日期 (500) 其他信息 (511) 国际分类 (525) 因不使用而撤销的商标 (526) 有限制注册的商标 (540) 商标图样 (541) 带有传统文本的商标图样 (550) 商标 (551) 公司或保证和质量商标 (552) 位置或设计商标 (553) 动作或多媒体商标 (554) 三维商标 (555) 全息商标 (556) 声音商标 (558)颜色代码 (559) 其他,即其他类型的标志(571)标志描述(580)日期。变更,如所有权、地址变更 (591) 商标的颜色 (592) 文字商标 (593) 图形商标 (594) 文字和图形商标 (600) 有关先前注册的信息(日期、国家、编号)(646) 相关注册(日期和编号)(730) 所有人 (740) 代理人 (791) 被许可人 (882) 分割的申请或注册 (883) 分割产生的新的申请或注册 (891) 日期。登记后提名
晚期 AMD 可分为两种亚型:晚期干性 AMD [称为地图样萎缩 (GA)] 和新生血管性(“湿性”)AMD (nAMD)。GA 是由上述机制导致的光感受器和视网膜色素上皮 (RPE) 细胞进行性、不可逆性丧失所致 (11)。湿性 AMD 被认为是由脉络膜中的异常血管生长到正常无血管的视网膜下层和 RPE 下层引起的,这一过程称为脉络膜新生血管 (CNV) (3,5)。CNV 被认为是视网膜黄斑硬化症积聚、RPE 脉络膜血液供应中断以及诱导血管生成信号蛋白表达的缺氧条件等多种因素共同作用的结果 (5)。如果不治疗,nAMD 会导致视网膜渗出、黄斑下出血和视网膜下纤维化,从而严重损害视力。
摘要。雷达干涉测量法在测量地球表面变化方面的地球物理应用在 20 世纪 90 年代初呈爆炸式增长。这种新的大地测量技术可以计算由星载合成孔径雷达在两个不同时间获取的两个图像之间的相位差引起的干涉图样。由此产生的干涉图是地面和雷达仪器之间距离变化的等高线图。这些地图提供了无与伦比的空间采样密度(� 100 像素公里� 2 )、具有竞争力的精度(� 1 厘米)和有用的观察节奏(1 次通过月� 1 )。它们记录地壳的运动、大气的扰动、土壤的介电变化和地形的起伏。它们还对技术效应敏感,例如雷达轨迹的相对变化或其频率标准的变化。我们描述所有这些现象如何对干涉图产生影响。然后,实用摘要解释了计算和处理各种雷达仪器干涉图的技术,包括四种
声辐射力 (ARF) 是由声波产生的稳定力,是实现微物体操作的一种便捷方式,例如微样本分离 [1-3] 和富集 [4]、细胞分选 [5,6] 和单细胞操作 [7]。与使用时间周期声场相比,使用脉冲和波列等瞬态激励可以实现更精确的操作 [1-7]。首先,脉冲声操作受瑞利声流的干扰较小 [8,9],因为辐射力比声流建立得快得多 [10,11]。其次,使用声波包可以定位声干涉图样,从而控制声捕获区域的空间范围 [12]。事实上,驻波比行波施加了大得多的辐射力(在小颗粒极限内),激光制导声镊(LGAT)[13] 利用这种干涉原理,创造了一种混合辐射力景观,该景观将高振幅压电声场(强,Z 场)和光图案光生声场(弱,L 场)耦合在一起。混合场保留了 L 场的空间信息和 Z 场的强度。
自从著名的玻尔-爱因斯坦对话以来,人们就知道,在干涉实验中,不可能同时获得最大可见度的干涉图样和路径信息。量子力学的这一特性是其一致性所必需的,费曼 2 将这一特性提升为一个原则:每当不可能(甚至在原则上)获得路径信息时,就必须叠加概率幅度,而不是将概率相加,以进行实验预测。玻尔引入了互补性的概念来描述两个可观测量不能同时精确知道的情况,海森堡不确定性原理就是其中的一个特例。对于玻尔来说,互补性是由于测量一个量(例如位置)的仪器的设计本身就排除了对互补量(这里是动量)的测量。在本文中,我们讨论了干涉和路径信息之间互补性的三个明确情况,并提出了一些有趣的结果。在第 2 节中,给出了双光子量子擦除器的实验实现;在第 3 节中,我们讨论了基于这些想法实现新的纠缠光子强源;在第 4 节中,我们介绍了与路径信息考虑密切相关的 Aharonov-Bohm 和 Einstein-Podolsky-Rosen 非局域性尖端之间的非平凡关系。
1. Alkeus Pharmaceuticals 对口服 gildeuretinol 的研究的顶线结果显示,减缓 GA 进展和改善视觉功能有显著趋势 [新闻稿]。Alkeus Pharmaceuticals。2024 年 10 月 23 日。2024 年 11 月 4 日访问。tinyurl.com/r72eyjnz 2. Annexon 在美国眼科学会 2024 年会议上展示了 ANX007 对患有较不晚期 GA 的干性 AMD 患者的 2 期视力保存数据 [新闻稿]。Annexon。2024 年 10 月 21 日。2024 年 11 月 5 日访问。tinyurl.com/5x2kkwb7 3. Heier J. ReCLAIM-2 试验,一项针对非中心性地图状萎缩患者的 elamipretide 2 期试验。发表于:美国视网膜专科医生协会;2022 年 7 月 14 日;纽约州纽约市。 4. Stealth BioTherapeutics 宣布首位患者入组全球 3 期临床计划,用于治疗干性老年性黄斑变性患者 [新闻稿]。Stealth BioTherapeutics。2024 年 6 月 5 日。2024 年 11 月 5 日访问。tinyurl.com/ypwdpct8 5. Belite Bio。公司介绍:通过口服治疗早期干预黄斑变性。2024 年 10 月。2024 年 11 月 5 日访问。tinyurl.com/5n99vp7f 6. Singh RP。2/3 期 SIGLEC 试验结果评估 AVD-104 对地图样萎缩的疗效:巨噬细胞活性的糖免疫调节。于 2024 年 10 月 18 日在芝加哥 AAO 发表。 7. Cognition Therapeutics。老年性黄斑变性。访问日期:2024 年 11 月 5 日。bit.ly/47bO58P 8. Lad EM、Chao DL、Pepio A 等人。单次玻璃体内注射 JNJ-1887(基因疗法,AAVCAG sCD59)对老年性黄斑变性 (AMD) 患者的汇总安全性分析。发表于 Euretina;2023 年 10 月 5 日至 8 日;阿姆斯特丹。9. Vajzovic L. 使用 ONL1204 抑制 Fas 以治疗继发于老年性黄斑的地图状萎缩