[1]可根据旋转不变性的最小值RNA结构基序的可扩展且可解释的识别,撰写的,Zhou,Malik,Tang,Mathews和Huang。重新梳理202 5。预印本:https://arxiv.org/abs/2402.17206。[2]通过竞争对手结构的产生和结构分解,Zhou,Tang,Mathews和Huang通过竞争结构的产生和结构分解识别。RECOMB 2024,LNCS 14758的RECOMB会议记录,Springer。https://arxiv.org/abs/2311.08339 [3] RNA设计通过structure-ware Multi-Frontier合奏优化,作者:Zhou,Dai,Li,Li,Ward,Mathews和Huang。ISMB 2023的会议记录;生物信息学,39(supp。 1)。 https://doi.org/10.1093/bioinformatics/btad252ISMB 2023的会议记录;生物信息学,39(supp。1)。https://doi.org/10.1093/bioinformatics/btad252
将人造模式添加到QR码之类的对象中可以简化诸如对象跟踪,机器人导航和传达信息(例如标签或网站链接)之类的任务。但是,这些模式需要物理应用,它们会改变对象的外观。相反,投影模式可以暂时更改对象的外观,协助3D扫描和检索对象纹理和阴影等任务。但是,投影模式会阻碍动态任务,例如对象跟踪,因为它们不会“粘在对象的表面上”。还是他们?本文介绍了一种新颖的方法,结合了预测和持久的物理模式的优势。我们的系统使用激光束(精神类似于激光雷达)进行热模式,热摄像机观察和轨道。这种热功能可以追踪纹理不佳的物体,其跟踪对标准摄像机的跟踪极具挑战性,同时不影响对象的外观或物理特性。为了在现有视觉框架中使用这些热模式,我们训练网络以逆转热扩散的效果,并在不同的热框架之间移动不一致的模式点。我们在动态视觉任务上进行了原型并测试了这种方法,例如运动,光流和观察无纹理的无纹理对象的结构。
抽象的抽水储存厂(PSP)被认为是具有低CO 2足迹的批量存储能源最成熟和最可靠的技术。随着可变可再生能源和电源设备的大规模整合,传输系统操作员(TSO)需要更大的灵活性,以确保电能的安全供应。从一家发电公司的角度来看,这代表了收入来源的多元化,因为作为快速频率服务倾向于出现的新市场。,尽管他们可以通过消耗或提供能源来平衡网格功率,但PSP的主要缺点是他们的低时间响应,使他们无法获得这些新的报酬机制。使用电池或超级电容器等技术的技术,使用诸如独立的储能系统(ESS)杂交水力发电厂,以提高PSP的灵活性并解锁提供动态辅助服务的一种考虑的解决方案之一。但是,水电站和环境限制中可用的少量空间可能会使这种解决方案难以访问。传统上,可逆PSP与固定速度机一起使用。静态频率转换器(SFC)通常用于在泵模式下启动组。从这个角度来看,拟议的论文提出了增强静态转换器(E-SFC)的创新概念。它是将ESS直接集成到工厂的SFC中,以使用电源转换器的使用使用。纸张的组织如下。在第3节中,暴露了协同控制方法操作混合动力厂的需求。与与工厂中型电压网格耦合的传统EST相比,它还提供了减少总体资本支出的机会。第1节提出了水力发电厂的灵活性,以适应不断增长的需求和全球新兴的辅助服务。在第2节中,SuperGrid Institute杂交PSP的创新解决方案,并在未来的电力市场中保持了现有的水力发电机队的关键作用。第4节描述了PSP在LOOP(PHIL)测试钻机中实时功率硬件杂交的实验结果。最后,第5节结束并突出了所提出的解决方案的优势。
G. Girard,RémyBerthelon,F。Andrieu,S。Leake,G。Chahine等。应用物理学杂志,2021,129(9),pp.095302。10.1063/5.0033494。CEA-03159504
由 HBr/O 2 组成的等离子体通常用于硅蚀刻工艺,如栅极蚀刻工艺或浅沟槽隔离蚀刻,由于人们对此类化学反应中的硅蚀刻相当了解,因此它成为研究等离子体脉冲对气相和等离子体-表面相互作用的影响的最佳选择。目标是了解连续等离子体和脉冲等离子体之间的根本区别,以及等离子体产生的变化如何影响最终的图案转移。在论文 I 中,我们展示了等离子体脉冲对离子通量和离子能量的强大影响。1 结果显示,占空比 (dc) 而不是脉冲频率对这些参数有显著影响。在本文中,我们重点研究等离子体脉冲对 HBr/O 2 等离子体中的蚀刻机制和图案转移的影响。先前的实验已经证明脉冲等离子体中等离子体引起的损伤有所减少,2 – 4 通常通过使用扫描电子显微镜 (SEM) 成像、椭圆偏振测量和 X 射线光电子能谱 (XPS) 对侧壁钝化层 (SPL) 进行形貌分析。许多作者已经研究了 HBr/O 2 等离子体对硅和 SiO 2 的蚀刻机理。5 – 13 下面总结了 Si 和 SiO 2 蚀刻的基本机理,其中考虑了原料气中极小比例的氧气。含溴、氢和(较少量)氧的离子撞击硅表面、分解、破坏键并形成富含卤素的非晶层,也称为反应蚀刻层 (REL),其中含有 H、Br 和一些 O 原子。非晶层的厚度和成分会根据离子能量、压力和原料气流量而变化。由于氢原子比其他粒子小得多,它们可以更深地渗透到硅层中,然后硅原子可以因碰撞而解吸,或可以融入挥发性物质,如 SiBr 4。含氢分子如 SiH 2 Br 2 的挥发性更强,13 但硅蚀刻并不
b' 在本研究中,我们报告了超快速瞬态热带 (THS) 技术用于测量氮化铝 (AlN) 薄膜各向异性热导率的实现情况。AlN 薄膜是通过在硅基板上制备的氧化硅 (SiO 2 ) 薄膜上在低温 (> 250 C) 下生长的反应性直流磁控溅射制备的。使用产生超短电脉冲\xc2\xad ses 的实验装置对热导率进行精确测量,并在纳秒和微秒时间尺度上电测量随后的温度升高。在 AlN 加工之前,将电脉冲施加在 SiO 2 上图案化的金属化条带内,并在 [0.1 \xe2\x80\x93 10 \xce\xbc s] 范围内选择的时间段内分析温度升高。当厚度从 1 \xce\xbc m 增加到 2 \xce\xbc m 时,AlN 横向平面(平面内)热导率分别从 60 增加到 90 W m 1 K 1(33 \xe2\x80\x93 44 W m 1 K 1)。这清楚地表明了 AlN 薄膜热导率的各向异性。此外,AlN 的体积热容量估计为 ~2.5 10 6 JK 1 m 3 。'
通过多轴 WAAM 制造 Schwarz-P 模型 Sébastien Campocasso a、Maxime Chalvin a、Ugo Bourgon a、Vincent Hugel a、Matthieu Museau ba 土伦大学,COSMER,土伦,法国 b 格勒诺布尔阿尔卑斯大学,CNRS,格勒诺布尔 INP,G-SCOP,38000 格勒诺布尔,法国 提交人:Didier Dumur (1),中央理工高等电力学院,巴黎萨克雷大学,伊维特河畔吉夫,法国 随着增材制造技术的兴起,Schwarz 填充模型越来越多地用于生产轻量化零件或提高热交换效率。目前,尽管定向能量沉积 (DED) 技术具有低成本和大尺寸能力等优势,但金属模型几乎完全使用基于粉末床的工艺来制造。本研究提出了一种基于等高层的框架,允许通过线弧增材制造 (WAAM) 多轴制造 Schwarz-P 图案。描述了计算机辅助制造 (CAM) 链中涉及的步骤,然后在 8 轴机器人单元上进行了实验验证。增材制造、机器人、刀具路径
癌症免疫疗法的成功取决于诱导靶向MHC-I分子呈现肿瘤抗原(TA)的免疫保护反应。我们证明了剪接抑制剂Isoginkgetin及其在先锋翻译产品(PTPS)生产阶段的水溶性和无毒衍生物IP2 ACT。我们表明,IP2在体外增加了PTP衍生的抗原表现,并损害体内肿瘤的生长。IP2作用是持久的,并且取决于针对TA的CD8 + T细胞响应。我们观察到,在用IP2处理后,对MCA205纤维肉瘤表面的MHC-I分子显示的抗原库进行了修饰。特别是,IP2增强了肿瘤抑制剂nisadary的外显子衍生表位的表现。IP2的组合具有靶向Nischarin衍生的表位的肽疫苗在体内表现出协同的抗肿瘤作用。这些发现将剪接体确定为开发基于表位的免疫疗法的可药物目标。
固定图案噪声(FPN)是由于成像传感器的反应中的不均匀性而在视频上存在的时间相干噪声。对于红外视频来说,这是一个常见的问题,它降低了观察者的质量并阻碍了随后的应用程序。在这项工作中,我们引入了FPN删除问题的概括,其中输入数据由具有相同FPN的几个不同序列组成。这是由红外摄像机通过镜子或相机本身(例如用于监视的镜子本身)捕获多个传感器的红外摄像机的动机。与从单个视图中的标准FPN删除问题相比,该多视图设置为FPN进行了更准确的估计。我们提出了一种新型的能量最小化,以进行多视图FPN去除,并提出了可以以离线和线路方式应用的两种优化算法。此外,我们还表明,提出的能量可以适应从单个视图中删除FPN的问题,并具有滚动窗口的方法,从而对最终的状态进行了显着改进。我们通过合成数据和来自监视红外摄像机的真实数据证明了所提出的方法的性能。
1 过程与材料科学实验室(LSPM-CNRS UPR-3407),巴黎北索邦大学(USPN),93430 Villetaneuse,法国; anhnn@hus.edu.vn (信息来源); thanhhuyen.vltn@gmail.com(HTTN); valerie.bockelee@lspm.cnrs.fr (VB); frederic.schoenstein@univ-paris13.fr (FS) 2 越南科学技术院材料科学研究所,越南河内 Cau Giay 区 3 激光物理实验室(LPL-CNRS UMR-7538),巴黎北索邦大学(USPN),93430 Villetaneuse,法国; jeanne.solar d@univ-paris13.fr 4 Jean Lamour 研究所,UMR 7198 CNRS - 洛林大学 Artem 校区,54000 Nancy,法国 5 R&I 二氧化硅合成工程师,SOLVAY,92400 Courbevoie,法国; ch.benosman@gmail.com 6 巴塞罗那材料科学研究所(ICMAB-CSIC),UAB校区,08193 Bellaterra,西班牙; agomez@icmab.es(AG); msimon@icmab.es (MS-S.); anaesther@icmab.es (AEC) 7 PIMM、法国工艺学院、CNRS、Cnam、HESAM 大学,151 Boulevard de l'Hopital,75013 巴黎,法国; Sylvie.GIRAUL T@ensam.eu * 通信地址:silvana.mer cone@univ-paris13.fr