专门为猫与狗数据集和与铁路相关的数据集。目标是解决公共和专业领域中复杂背景和多角度摄影所带来的挑战。剪辑 - 取回剪辑模型的图像编码器作为其核心体系结构,提取图像特征,并构建一个相似性矩阵,以与不同图像之间的相似性分数。基于排序的结果,它显示最相关的图像。为了验证剪辑 - 恢复的鲁棒性和稳定性,我们进行了比较研究和干扰抗性实验。实验结果显示出显着的进度改进,表明了出色的图像检索效果。具体来说,剪辑回程有效地处理复杂的背景和构成不同数据集的变化,从而提供准确有效的检索服务。
在标准信号处理中,采样理论指出,以高于奈奎斯特速率采样的带限信号可以完美重建。这一重要特性是欧几里得信号采样的基石。然而,当信号定义在更复杂的域上时,自适应采样策略的设计仍然是一个活跃的热门话题。为了处理位于不规则域上的信号,图信号处理 (GSP) [1, 2] 已成为标准方法的有力替代方案。在这种形式化中,图定义了一个支持,信号(现在称为图信号)在此支持上定义。这允许捕获信号演变的结构,从而提供比单独考虑信号更多的信息。通过将信号处理的概念和工具推广到图上记录的信号,GSP 已证明其在滤波 [3]、重构 [4] 和采样 [5] 等许多任务中都取得了成功。对于后者,在单变量情况下提出的一个想法是利用其底层图,从某些节点的测量中重建图信号。这种称为图采样集选择(或子集采样)的方法现在已得到充分研究 [6, 7, 8]。例如,(在无噪声设置下)假设图信号是带限的,可以证明随机选择合理数量的样本/节点足以以高概率实现完美重建 [9]。不幸的是,此类方法存在一些主要局限性。首先,到目前为止,大多数文章都集中在单变量信号上。然而,GSP 中最近的出版物主张需要多域图信号处理,以便处理张量数据或矢量数据 [10, 11]。事实上,在传感器网络等多个应用环境中,数据流被记录为在网络上演变的多变量时间序列,从而定义至少
在所有情感识别任务的解决方案中,脑电图(EEG)是一种非常有效的工具,并受到了研究人员的广泛关注。此外,脑电图中多媒体的信息通常提供了更完整的情感图片。,很少有现有研究同时合并来自时间域,频域和功能性脑连接性的脑电图信息。在本文中,我们提出了一个多域自适应图卷积网络(MD-AGCN),融合了频域和时间域的知识,以充分利用EEG信号的互补信息。md-agCN还通过将通道间相关性与通道内信息相结合,从而考虑了脑电图通道的拓扑,从中可以以自适应方式学习功能性大脑的连接。广泛的实验结果表明,在大多数实验环境中,我们的模型超过了最先进的方法。同时,结果表明,MD-AGCN可以有效地提取互补的域信息,并利用基于EEG的情绪识别的信道关系。
文库。除此之外,源井还提供CRISPR-KO、CRISPRa、CRISPRi 三大定制文库从高通量sgRNA 文
无监督的域适应性(UDA)是解决域转移问题的有效方法。特别是UDA方法试图对齐源和目标代表,以改善对目标域的概括。,UDA方法在适应过程中可以访问源数据的假设下起作用。但是,在实际情况下,由于隐私法规,数据传输限制或专有数据关注,标记的源数据通常受到限制。源 - 自由域适应(SFDA)设置旨在通过对目标域进行源训练的模型来减轻这些问题,而无需访问源数据。在本文中,我们探讨了自适应对象检测任务的SFDA设置。为此,我们提出了一种新颖的培训策略,以使源训练的对象将对象降低到目标域而没有源数据。更重要的是,我们通过利用给定目标域输入的对象关系来设计一种新颖的对比损失,以增强目标表示形式。这些对象实例关系是使用实例关系图(IRG)网络建模的,然后将其用于指导对比度代表学习。此外,我们还利用学生教师将知识从源训练的模型提高到目标域。对多个OB-JECT检测基准数据集进行了广泛的实验表明,所提出的方法能够有效地适应源训练的对象检测器对目标域,超过了最先进的域自适应检测方法。代码和模型在https://viudomain.github.io/irg-sfda-web/中提供。
秘书处:生命科学行业促进办公室,工业促进部,千叶县工商业部,电话:043-223-2725电子邮件:sangyo-b@mz.pref.chiba.chiba.lg.jp.jp.jp
刘仲民,杨富君,胡文瑾 .多尺度特征交互的伪标签无监督域自适应行人重识别 [J].光电工程, 2025 , 52 (1): 240238 Liu Z M, Yang F J, Hu W J. Multi-scale feature interaction pseudo-label unsupervised domain adaptation for person re- identification[J].Opto-Electron Eng , 2025, 52 (1): 240238
1) MD Zeiler 和 R. Fergus:可视化和理解卷积网络,欧洲计算机视觉会议 (2014)。 2) https://jp.mathworks.com/help/deeplearning/ug/understand- network-predictions-using-occlusion.html 3) Noriyoshi Miyoshi、Ryo Kawasaki、Hidetoshi Eguchi 和 Yuichiro Toki:大阪大学 AI 医院和胃肠外科的现状和前景,Surgery, 83, 11 (2021) 1153。