当通过某些宽度参数参数化时,可以在XP时间中解决大量NP -HARD图问题。因此,在解决特殊图类类别的问题时,知道所考虑的图形类是否有限制宽度是有帮助的。在本文中,我们考虑MIM Width,这是一个特别通用的宽度参数,每当分解为“快速计算”的图形类别时,它具有许多算法应用程序。我们首先扩展了用于证明图形类MIM宽度的工具包。通过将我们的新技术与已知技术相结合,然后从遗传图类别的角度开始进行系统研究,以对MIM宽度进行边界,并与Clique宽度进行比较,这是一个经过深入研究的更严格的宽度参数。我们证明,对于给定的图H,当h-free graph的类别在且仅当它具有限制的clique-width时具有界限。我们表明(h 1,h 2)无图形是不正确的。我们确定了(h 1,h 2)的几个通用类别的无界图形宽度但有界的含量宽度的无限制图,这说明了中间宽度的力量。此外,我们表明,对于这些类别,可以在多项式时间内找到恒定模拟宽度的分支分解。因此,如前所述,这些结果具有算法的含义:当输入仅限于这样一类(H 1,H 2)无图形时,许多问题变成了多项式的可溶可求解,包括经典问题,包括k-着色和独立设置,统治性问题,已知的LC-VSVP问题,以及LC-lc-lc-lc-lc-vsvp的距离vsvp vesvp的距离很少。我们还证明了许多新的结果,表明在某些H 1和H 2中,(H 1,H 2)的类别的类别无绑定的MIM宽度。集团宽度的界限意味着MIM宽度的界限。通过将我们的结果结合起来,这给出了新的有界和无界的MIM宽度案例,并与已知的有界案例进行了集体宽度的情况,我们介绍了当前最新情况的摘要定理(H 1,H 2) - 免费图形。特别是,我们将所有对(H 1,H 2)的MIM宽度分类为所有对(H 1,H 2)的无图形图(H 1,H 2) V(H 1)| + | v(h 2)| ≤8。当h 1和h 2是连接的图时,我们将所有对(H 1,H 2)分类,除了剩余的有限族和一些孤立的病例。
谱聚类是聚类无向图的一种常用方法,但将其扩展到有向图(有向图)则更具挑战性。一种典型的解决方法是简单地对称化有向图的邻接矩阵,但这可能会导致丢弃边方向性所携带的有价值信息。在本文中,我们提出了一个广义的谱聚类框架,可以处理有向图和无向图。我们的方法基于一个新泛函的谱松弛,我们将其引入为图函数的广义狄利克雷能量,关于图边上的任意正则化测度。我们还提出了一种由图上自然随机游走的迭代幂构建的正则化测度的实用参数化。我们提出了理论论据来解释我们的框架在非平衡类别的挑战性设置中的效率。使用从真实数据集构建的有向 K-NN 图进行的实验表明,我们的图分区方法在所有情况下均表现良好,并且在大多数情况下优于现有方法。
摘要 — 在本文中,我们提出了一种机器学习过程,用于将大规模社交物联网 (SIoT) 设备聚类为几组具有强关系的相关设备。为此,我们根据物联网设备的历史数据集及其社交关系生成无向加权图。使用这些图的邻接矩阵和物联网设备的特征,我们使用图神经网络 (GNN) 嵌入图的节点,以获得物联网设备的数值向量表示。向量表示不仅反映了设备的特性,还反映了它与同类设备的关系。然后将获得的节点嵌入输入到传统的无监督学习算法中,以相应地确定聚类。我们使用两种众所周知的聚类算法展示获得的物联网组,特别是 K 均值和基于密度的聚类发现算法 (DBSCAN)。最后,我们将所提出的基于 GNN 的聚类方法在覆盖率和模块性方面的性能与仅应用于从不同关系创建的图的确定性 Louvain 社区检测算法的性能进行比较。结果表明,该框架在聚类大型物联网系统方面取得了有希望的初步成果。索引术语 — 物联网 (IoT)、聚类、深度学习、图神经网络。
[3] LIBOWITZ MR,WEI K,TRAN T,et al.Regional brain volumes relate to Alzheimer's disease cerebrospinal fluid biomarkers and neuropsychometry:A cross-sectional,observational study[J].PLoS One,2021,16(7):e0254332.[4] 王含春 , 汪群芳 , 罗长国 , 等 .磁共振薄层扫描结合人工智能脑结构分割技术分析海马体积辅 助诊断脑小血管病认知功能障碍 [J].全科医学临床与教育 ,2024,22(3):208-211.[5] 姜华 , 宛丰 , 吕衍文 , 等 .2 型糖尿病伴认知功能障碍患者基于体素的脑形态学 MRI 研究 [J].中 国 CT 和 MRI 杂志 ,2018,16(4):22-25.[6] 景赟杭 , 郭瑞 , 常轲 , 等 .2 型糖尿病性认知功能障碍脑结构 MRI 成像研究进展 [J].延安大学学 报(医学科学版) ,2024,22(1):88-91,107.[7] 郭浩 , 和荣丽 .磁共振成像对老年性痴呆患者海马解剖结构的评估价值研究 [J].磁共振成 像 ,2022,13(8):75-79.[8] 罗财妹 , 李梦春 , 秦若梦 , 等 .阿尔茨海默病谱系患者的海马亚区体积损害特征 [J].中风与神经 疾病杂志 ,2019,36(12):1097-1101.[9] 冯伦伦 , 金蓉 , 曹城浩 , 等 .阿尔茨海默病患者认知功能减退的海马亚区结构改变分析 [J].临床 放射学杂志 ,2022,41(10):1819-1824.[10] WEI Y,HUANG N,LIU Y,et al.Hippocampal and Amygdalar Morpho logical Abnormalities in Alzheimer,s Disease Based on Three Chinese MRI Datasets[J].Curr Alzheimer Res,2020,17:1221-1231 . [11] ESTEVEZ S S,JIMENEZ H A,ADNI G.Comparative analy sis of methods of volume adjustment in hippocampal volumetry for the diagnosis of Alzheimer disease[J].Neuroradiol,2020;47(2):161-5.[12] 曾利川 , 王林 , 廖华强 , 等 .结构与功能磁共振成像在轻度认知障碍及阿尔茨海默病中的应 用 [J].中国老年学杂志 ,2021,41(13):2902-2907.[13] KODAM P,SAI S R,PRADHAN S S,et al.Integrated multi-omics analysis of Alzheimer's disease shows molecular signatures associated with disease progression and potential therapeutic targets[J].Sci Rep,2023,13(1):3695.[14] 黄建 , 王志 .复杂网络分析技术在阿尔兹海默症患者脑结构和功能影像中的应用进展 [J].中 国医学物理学杂志 ,2024,41(8):1053-1055.[15] JELLINGER K A.The pathobiological basis of depression in Parkinson disease:challenges and outlooks[J].J Neural Transm(Vienna),2022,129(12):1397-1418.[16] BANWINKLER M,THEIS H,PRANGE S,et al.Imaging the limbic system in Parkinson's disease-A review of limbic pathology and clinical symptoms[J].Brain Sci,2022,12(9):1248.[17] 程秀 , 张鹏飞 , 王俊 , 等 .小脑结构与功能磁共振成像在帕金森病中的研究进展 [J].磁共振成 像 ,2022,13(4):146-149.[18] CUI X,LI L,YU L,et al.Gray Matter Atrophy in Parkinson's Disease and the Parkinsonian Variant of Multiple System Atrophy:A Combined ROI-and Voxel-Based Morphometric Study[J].Clinics(Sao Paulo),2020,75:e1505.[19] LOPEZ A M,TRUJILLO P,HERNANDEZ A B,et al.Structural Correlates of the Sensorimotor Cerebellum in Parkinson's Disease and Essential Tremor[J].Mov Disord,2020,35(7):1181-1188.[20] 鲍奕清 , 王二磊 , 邹楠 , 等 .帕金森病伴疲劳患者的大脑功能与结构磁共振成像研究 [J].临床 放射学杂志 ,2024,43(8):1265-1270.[21] 邹楠 , 王二磊 , 张金茹 , 等 .帕金森病伴疼痛患者大脑皮层厚度改变的结构 MRI 研究 [J].磁共 振成像 ,2024,15(5):13-18,23.[22] 屈明睿 , 高冰冰 , 苗延巍 .帕金森病伴抑郁在脑边缘系统结构及功能改变的 MRI 研究进展 [J].磁共振成像 ,2023,14(12): 127-131.
在脑类器官中[58]。 (f)TPP制造光子晶体微纳米传感单元[59]。 (g)成像在脑类器官中[58]。(f)TPP制造光子晶体微纳米传感单元[59]。(g)成像
类脑计算是借鉴脑科学基本原理,打破 “ 冯诺依曼 ” 架构束缚的新型计算技术。本研究组将从理论和器件两个方向对类脑计算展开协同 研究。 理论方面:研究类脑计算架构、模型和算法,探索基于类脑计算的类脑智能的基础理论;借鉴神经元模型、神经环路传导、神经编码 及认知、学习、记忆、决策等神经机制,逐步建立和完善类脑处理信息处理的数学 / 计算原理和模型;构建类脑计算和智能的统一理论 框架。为类脑计算器件及系统的发展提供理论基础。 器件方面:基于新材料和新技术,研究新型高性能类脑神经器件,解决一致性差、可靠性差、规模化难等痛点;研究基于类脑神经器 件的网络架构,构建大规模阵列,开展外围电路的研发与设计;研究基于新型类脑器件的感知和计算架构,发展感存、存算、感存算 一体系统。
电致变色 (Electrochromic, EC) 是材料的光学属 性 ( 透过率、反射率或吸收率 ) 在外加电场作用下发 生稳定、可逆颜色变化的现象 [1] 。 1961 年 , 美国芝 加哥大学 Platt [2] 提出了 “ 电致变色 ” 的概念。到 1969 年 , 美国科学家 Deb [3] 首次报道了非晶态三氧化钨 (Tungsten Trioxide, WO 3 ) 的电致变色效应。随后 , 人 们开始对电致变色材料进行了广泛而深入的研究。 20 世纪 80 年代 , “ 智能窗 ” 概念提出后 [4] , 由于节能环 保、智能可控等优点 , 形成一波新的电致变色技术研究 热点 [5-10] 。随着研究的深入 , 特别是纳米技术的快速 发展 , 器件性能得到了大幅的提升 ( 图 1(a)) [11-13] , 电 致变色器件 (Electrochromic Device, ECD) 也逐渐实现 了产业化应用。 根据材料种类不同 , 电致变色材料可大致分为 有机电致变色材料和无机电致变色材料。相较而言 , 有机电致变色材料具有变色速度快、柔性好、可加 工性强和颜色变化丰富等优点 , 主要包括导电高分 子、紫罗精类小分子和金属有机螯合物等 [14] 。无机 电致变色材料具有光学对比度高、光学记忆性好和 环境稳定性高等优点 , 主要包括过渡金属氧化物以 及普鲁士蓝等 [15] 。目前 , 电致变色器件的结构主要 为类三明治结构 , 由两个透明导电层中间夹一层电 致变色活性层构成。根据电致变色材料种类不同 , 电致变色活性层可分为整体结构和分层结构。整体 结构是电致变色材料与电解质相互混合为一层 , 这 类结构主要针对紫罗精等小分子有机物。这类器件 在外加电场作用下 , 有机小分子扩散到电极表面或 以电解质中氧化还原剂为媒介发生氧化还原反应而 实现颜色变化 [16] 。分层结构是电致变色材料、电解 质和对电极 ( 或叫离子储存层 ) 依靠界面接触分层 ,
图 1 : AI 带来 OA 功能的重构 ......................................................................................... 3 图 2 :微软发布 Copilot .................................................................................................. 3 图 3 :百度“如流” ........................................................................................................ 3 图 4 : Copilot 根据要求起草邮件 .................................................................................... 4 图 5 : Copilot 提炼邮件内容 ........................................................................................... 4 图 6 : Copilot 对会议内容进行总结并支持提问 .............................................................. 5 图 7 : Copilot 支持会议内容的实时总结和提问 .............................................................. 5 图 8 : Copilot 对客户关注的领域进行扫描 ..................................................................... 5 图 9 : Copilot 根据销售资料提供竞品分析建议 .............................................................. 5 图 10 : Copilot 整理各类资料协作对工作内容进行梳理 ................................................. 6 图 11 : Copilot 为接下来的会议准备相关资料 ................................................................ 6 图 12 :泛微智能办公平台框架图 .................................................................................... 7 图 13 :泛微智能办公平台前端技术 ................................................................................ 7 图 14 :泛微小 e 助手查询业绩 ....................................................................................... 7 图 15 :泛微小 e 助手智能填单 ....................................................................................... 7 图 16 :小致语音助手技术框架 ........................................................................................ 8 图 17 :小致语音助手使用示例 ........................................................................................ 8