了解道路结构对于实现自动驾驶至关重要。此信息主题包含两个基本组成部分 - 车道与车道与交通元素之间的关联之间的互连(例如,交通信号灯),其中仍然没有综合拓扑推理方法。一方面,现有的地图学习技术在使用基于分段或基于LAN线的表示中得出车道连接方面面临挑战;或先前的方法专注于中心线检测,同时忽略了互动建模。另一方面,将流量元素分配给车道的主题在图像域中受到限制,而图像和3D视图之间对应关系的构造是未开发的挑战。为了解决这些问题,我们提出了Toponet,这是一个用于分析驾驶场景的最终端拓扑推理网络。为了有效地捕获驾驶环境的拓扑结构,我们介绍了三个关键设计:(1)将嵌入式的介绍从2D元素集成到统一的特征空间中; (2)一个精选的场景图神经网络,该网络建模并促进网络中的相互作用; (3)设计了一个场景知识图,而不是任意传输消息,而是将先验知识与各种类型的场景拓扑区分开。我们在具有挑战性的场景上评估了Toponet理解基准OpenLane-V2,我们的方法在所有感知和拓扑指标中都超过了所有以前的作品。该代码将公开发布。
随着极端天气事件变得更加频繁和激烈,我们的工作方式和我们提供的建筑物必须适应以保护生活,投资和生态系统。在建筑环境中的韧性不再是一种选择;需要确定客户,设计师和我们自己的风险和行动的必要性。我们将寻求实施与气候相关的金融披露(TCFD)建议工作组和PAS2080标准“建筑环境中的碳管理”,以帮助确保我们的工作中考虑气候变化风险和弹性。
BNT162B2尖峰mRNA定量分析。用于定量BNT162B2 SPIKE mRNA的相对含量,如Gasparello等人(1)所述,在24小时处理后分离了来自BNT162B2处理的细胞的总RNA,并将其反转录为CDNA。Fertig等人(2)对BNT162B2 SPIKE mRNA的定量(Q)PCR分析进行了。在这项研究中,底漆被设计为特定于公共可用的密码子优化疫苗mRNA序列(2,3),但不是编码S蛋白的病毒RNA。使用的引物的序列为5'-GTG GAT CTG CCC ATC GGC ATC(正向)和5'-GTC CAT CCG CCG CTG CTG CTG CTA TCG(反向),并以200 nm的最终浓度使用。对于PCR分析,在95°C下首次10分钟后,进行了40个循环放大周期(在95°C时为15秒,在65°C时1分钟),并从60至95°C进行加热的最后一步。PCR扩增
大脑和企业文化映射。寻找创新的来源就像更好地了解大脑。难以捉摸,但越来越好!构造研究人员和科学家,从来没有学习过大脑及其起作用。了解企业文化可以远远落后吗?如果我们有能力更好地理解人脑的工作,这是世界上最复杂的装置,我们也可以更好地了解组织的文化,从某种意义上来说,这是公司所有大脑的总和。我们真的了解公司的文化吗?在启动一项改善创新性计划之前,了解有关企业文化的更多信息是否重要?“探测探索者”技术相似吗?了解一种要鼓励创新的文化是提高创新能力的重要一步。事实证明,试图了解公司的运作,尤其是其文化的运作,与深入研究人脑的复杂性和功能非常相似。显然,大脑比公司的文化要复杂得多,但是在理解大脑功能的方法和理解公司文化的方法之间存在相似之处。映射大脑的活动,能力,联系,优势和劣势的科学与试图理解公司文化有关。映射1;当动作和反应之间没有明显的线性或可观察的路径时,一种解决根本原因的技术是用于探索人脑的技术之一。
1 毒理学实验室,雷蒙德庞加莱医院,AP-HP,92380 Garches,法国; isabelle.etting@aphp.fr(即); pamela.dugues@aphp.fr(P.D.); emuri.abe@aphp.fr(E.A.); islamamine.larabi@aphp.fr (I.-A.L.); jean-claude.alvarez@aphp.fr (J.-C.A.)2 法国巴黎 AP-HP 特鲁索医院儿科血液肿瘤科,75012; jean.donadieu@aphp.fr 3 毒理学实验室,拉里博瓦西里医院,AP-HP,75010 巴黎,法国; pauline.thiebot@aphp.fr 4 法国布洛涅比扬古 92100 Ambroise Par é 医院肺科; etienne.giroux-leprieur@aphp.fr 5 法国布洛涅比扬古 92100 安布罗瓦斯帕雷医院皮肤科; philippe.saiag@aphp.fr 6 Inserm U-1018,CESP,MOODS 团队,MasSpecLab 平台,巴黎萨克雷/凡尔赛大学,78180 Montigny-le-Bretonneux,法国 * 通讯地址:marie.martin@aphp.fr
摘要。Anwar A,Zainuddin,Djawad Mi,AslamyahS.2023。使用混合微生物提高其营养质量的雨树(萨曼萨曼)粉粉的发酵。生物多样性24:5863-5872。雨树(萨曼萨曼)种子粉是蛋白质的来源;然而,由于存在抗营养剂,例如单宁蛋白作为蛋白质抑制剂,高粗纤维含量,溶解的蛋白质以及干燥和有机物的消化率低。使用混合微生物发酵可能会增强雨树粉的营养价值。这项研究旨在提高营养质量,并在体外使用混合微生物在体外使用混合微生物来减少雨树粉中的抗营养因素。这项研究中使用的微生物包括芽孢杆菌,酿酒酵母和根茎sp。这项研究是使用完全随机设计的阶乘设计的,即使用两个因素,即3剂混合微生物(0、1.5、3和4.5 ml/100 g雨树籽粉)和3个不同的孵育时间(42、72和96小时)。微生物剂量和孵育时间之间存在显着相互作用。The treatment of 4.5 mL of mixed microbes/100 g rain tree seed meal and a 72 hours incubation time reduced substantially crude fiber content (59.60%) and crude fat (73.20%), coupled with an increase in crude protein content (11.62%), NFE (6.52%), dry matter digestibility (DMD) (36.78%), organic matter digestibility (OMD) (50.42%)和溶解的蛋白质含量(20.27%)。单宁含量在处理4.5 ml混合微生物/100g雨树粉时显着降低(37.72%),孵育时间为96小时。这些发现表明,经受发酵72小时或更长时间的雨树粉可改善营养质量,DMD和OMD。