最近的研究表明,微生物对于维持人类健康至关重要。营养不良或这些微生物群落中的失衡与多种人类疾病密切相关。因此,了解微生物对疾病的影响至关重要。Dugel模型利用图形卷积神经网络(GCN)和图形注意网络(GAT)的优势,确保捕获微生物 - 疾病关联网络中的本地和全局关系。长短记忆网络(LSTM)的集成进一步增强了模型理解特征表示中的顺序依赖性的能力。这种全面的方法使Dugel能够在预测潜在的微生物疾病关联方面达到很高的准确性,从而使其成为生物医学研究和发现新的治疗靶标的有价值的工具。通过结合基于图形和基于序列的学习技术,Dugel解决了现有方法的局限性,并为预测微生物 - 疾病关联提供了强大的框架。为了评估Dugel的性能,我们基于两个数据库(HMDAD和tobiome)进行了全面的比较实验和案例研究,以证明Dugel可以有效地预测潜在的微生物疾病关联。
脑电图 (EEG) 信号经常用于各种脑机接口 (BCI) 任务。虽然深度学习 (DL) 技术已经显示出良好的效果,但它们受到大量数据需求的阻碍。通过利用来自多个受试者的数据,迁移学习可以更有效地训练 DL 模型。欧几里得对齐 (EA) 是一种越来越受欢迎的技术,因为它易于使用、计算复杂度低并且与深度学习模型兼容。然而,很少有研究评估它对共享和单个 DL 模型训练性能的影响。在这项工作中,我们系统地评估了 EA 与 DL 结合对解码 BCI 信号的影响。我们使用 EA 用来自多个受试者的数据训练共享模型,并评估了它对新受试者的可迁移性。我们的实验结果表明,它将目标受试者的解码提高了 4.33%,并将收敛时间缩短了 70% 以上。我们还为每个受试者训练了单独的模型,以用作多数投票集成分类器。在此场景中,使用 EA 可将 3 模型集成准确率提高 3.71%。但是,与使用 EA 的共享模型相比,集成准确率降低了 3.62%。
用于量子计算的图形演算,例如 ZX 演算 [9]、ZW 演算 [10] 和 ZH 演算 [2],是设计和分析量子过程的强大而直观的工具。它们已经成功应用于基于测量的量子计算研究 [15]、通过对表面码进行格点手术进行纠错 [12,13],以及量子电路优化 [4,11,22]。它们与“路径求和” [1,23,28] 的紧密联系,以及它们各自的完整方程理论 [4,16,21,27],使它们成为自动验证的良好候选者 [7,14,17]。一个重要的问题是综合问题,其答案对许多不同方面都有好处。给定一个量子过程的描述,我们如何将其转换成 ZX 图?这一切都取决于所提供的描述。我们已经展示了如何有效地从量子电路 [4]、基于测量的过程 [15]、一系列格子手术操作 [13]、“路径求和” [23] 甚至过程的整个矩阵表示 [20] 获取图表。虽然最后一种转换在矩阵大小方面是有效的,但是矩阵本身的大小会随着量子比特的数量呈指数增长,因此实际上很少有过程会以整个矩阵的形式给出。然而,矩阵表示有一个优势:它 (本质上) 是唯一的。两个量子算子在操作上相同当且仅当它们的矩阵表示共线。这与之前的所有不同例子形成了对比,例如两个不同的量子电路可以实现相同的算子。
摘要 —EEG 解码算法的发展面临着数据稀疏性、受试者多变性和精确注释需求等挑战,所有这些对于推进脑机接口和增强疾病诊断都至关重要。为了解决这些问题,我们提出了一种新颖的两阶段方法,称为自监督状态重建-启动黎曼动力学(EEG-ReMinD),该方法减轻了对监督学习的依赖并整合了固有的几何特征。这种方法可以有效地处理 EEG 数据损坏并减少对标签的依赖。EEG-ReMinD 利用自监督和几何学习技术以及注意机制,在黎曼几何框架内分析 EEG 特征的时间动态,称为黎曼动力学。对两种不同神经退行性疾病的完整和损坏数据集的比较分析强调了 EEG-ReMinD 的增强性能。
运动员的心脏是参加竞争运动的成年人的众所周知现象。运动训练与一系列形态学和功能性心脏适应有关,不幸的是,“运动员的心脏”被称为“运动员的心脏”,大多数关于训练引起的心脏重塑的研究已经对成人进行了,目前的指南主要应用于成人。但是,对从事运动的儿童进行休息的心电图和成像的适当解释至关重要,它有助于我们尽早发现生命危险的状况,管理治疗和资格参加快速增长的儿科运动员的体育比赛。作为训练引起的重塑可以模仿潜在的心血管问题,导致可能的误诊。这一挑战是由年轻运动员心脏的生理变化加剧了,这种变化可能类似于病理状况。因此,要区分良性适应和严重条件是必要的,系统的方法。关键字:运动•儿童•心血管筛查•心电图•运动员的心脏
摘要:目前,脑电图 (EEG) 解码任务中的最佳性能通常通过深度学习 (DL) 或基于黎曼几何的解码器 (RBD) 实现。最近,人们对深度黎曼网络 (DRN) 的兴趣日益浓厚,它可能结合了前两类方法的优势。然而,仍然有一系列主题需要额外的洞察力,为 DRN 在 EEG 中的更广泛应用铺平道路。这些包括架构设计问题,例如网络大小和端到端能力。这些因素如何影响模型性能尚未探索。此外,尚不清楚这些网络中的数据是如何转换的,以及这是否与传统的 EEG 解码相关。我们的研究旨在通过分析具有广泛超参数的 EEG DRN,为这些主题领域奠定基础。在五个公共 EEG 数据集上测试了网络,并与最先进的 ConvNets 进行了比较。在这里,我们提出了端到端 EEG SPDNet(EE(G)-SPDNet),并且我们表明这种宽的端到端 DRN 可以胜过 ConvNets,并且在这样做时使用生理上合理的频率区域。我们还表明,端到端方法比针对 EEG 的经典 alpha、beta 和 gamma 频带的传统带通滤波器学习更复杂的滤波器,并且性能可以从特定于通道的滤波方法中受益。此外,架构分析揭示了进一步改进的地方,因为整个网络可能未充分利用黎曼特定信息。因此,我们的研究展示了如何设计和训练 DRN 以从原始 EEG 推断与任务相关的信息,而无需手工制作的滤波器组,并强调了端到端 DRN(如 EE(G)-SPDNet)用于高性能 EEG 解码的潜力。
摘要AI生成的媒体的扩散,尤其是在艺术方面,引发了人们的兴趣创建与原始和AI生成的艺术品之间的模型。但是,了解为什么这些模型做出某些决策仍然是一个重大挑战。本文通过使用Grad-CAM来生成模型焦点区域的视觉解释,并结合大型语言模型(LLMS)来提供自然语言描述,从而增强了基于视觉变压器的分类模型的解释性。我们通过使用它们来生成用于艺术品分类的Grad-CAM可视化的文本说明,评估了三个尖端的LLM:Llava-下一个,指令Blip和Kosmos-2。通过定量和定性分析,我们发现,尽管指令blip和kosmos-2在生成的描述和视觉内容之间达到了更高的相似性得分,但llava-next提供了更具洞察力和连贯的解释,尤其是对于AI生成的艺术。这项研究证明了LLM在复杂的图像分类任务中提高AI决策的解释性的潜力,有助于弥合模型决策与人类理解之间的差距。
人工智能(AI)彻底改变了心脏病学,尤其是通过与心电图(ECG)的整合。本研究旨在评估AI在解释心脏疾病诊断心脏病的有效性。叙事书目审查涵盖了2020年至2024年之间发表的文章,重点介绍了在ECG分析中应用和机器学习(ML)的研究。结果表明,AI可以将ECG转换为有效的筛选和预测工具,从而识别出常见的亚临床模式。强调了对有效临床实施的AI/ML素养的必要性。增强了AI改善心电图,将其变成强大的生物标志物的潜力,并指出AI辅助分析可以克服经典方法的局限性,从而扩大ECG功能。尽管ECG中的I AI面临与验证,数据隐私和对算法的理解有关的挑战,但它继续在早期发现和预防性干预心脏病方面有了重大改善。关键字:人工智能;心电图;心脏诊断。
非生物。不具备生命的全部 (8) 个特征:——由细胞组成 不需要——需要能量——繁殖 没有宿主则不能繁殖——响应——维持体内平衡——进化——生长发育——遗传(有 DNA)*
产科临床专家(内部和观察者)对心脏图(CTG)的视觉解释(CTG)的固有变异性提出了产科护理的重大挑战。为了回应,我们研究了自动化的CTG解释,作为增强劳动期间早期发现胎儿缺氧的潜在解决方案,这有可能减少不必要的手术干预措施并改善整体母体和新生儿护理。本研究采用深度学习技术来减少与视觉CTG解释相关的主观性。我们的结果表明,使用客观的脐带血液pH结果测量值,而不是临床医生定义的APGAR分数,可以产生更一致且健壮的模型性能。另外,通过一系列消融研究,我们探讨了时间分布变化对这些深度学习模型的性能的影响。我们检查了性能与公平之间的权衡,特别是评估了人口统计和临床亚组的性能。最后,我们讨论了我们发现对这种系统的现实部署的实际含义,并强调了它们在资源有限的医疗环境中的潜在效用。