摘要:在美国南加州至阿拉斯加的 18 个地点研究了红海胆 Strongylocentrotus franciscanus 的生长和存活率。生长率通过四环素标记确定,并使用 Tanaka 生长方程建模。存活率通过大小频率分布和生长参数估算。使用对数线性分析,确定生长转变在各个地点有所不同(p G 0.001),但南北没有差异(p > 0.80)。Tanaka 生长函数的参数是针对所有数据组合(N = 2714)估算的。地点残差没有显示纬度趋势,因此结果与对数线性分析一致。相对颌骨(半金字塔)大小,以颌骨长度与测试直径的函数的异体生长指数 β 来衡量,已被证明对可用食物有反应。对于红海胆,β 与生长呈负相关,但相对颌骨大小与纬度无相关性,这表明食物供应不存在纬度差异。与年增长率相反,年存活率与纬度相关,且在北部更高。从北加州到阿拉斯加,平均年存活概率为 0.93 年 - ',在南加州为 0.77 年 - '。存活率随纬度变化的可能原因是疾病和与温度相关的压力。本文为制定有关红海胆南北种群大小和存活率差异的假设提供了基础,并可能为其他具有浮游幼虫的海洋物种提供假设。
本文概述了用于实现纳米、微米和宏观系统以及系统集成的最常见晶圆键合技术。首先,讨论了晶圆键合应用的一般方面。然后是对不同晶圆键合工艺的技术描述,因为不同的键合应用需要与工艺集成和应键合的晶圆上的实际表面层相关的不同工艺。最后,在概述表中显示了优点和缺点以及技术和应用方面,对所述键合工艺进行了系统化和详细的比较。本概述应有助于为晶圆级键合和其他应用选择最合适的工艺。
凭借 50 多年先进晶圆处理和运输经验,Entegris 持续提供安全可靠的 200 毫米晶圆加工解决方案。我们的 200 系列 200 毫米晶圆运输载体可满足当今 200 毫米晶圆厂的自动化、污染控制和生产力要求。这些晶圆载体专为先进晶圆运输而设计,可提供精确的晶圆存取、可靠的设备操作和安全的晶圆保护。
在本文中,我们考虑了对于 D2W 键合,封装集成商可以使用几种键合技术,从焊球到底部填充 TCB 和混合键合。讨论了各种特定的应用差距和技术载体,以强调 HVM 的采用目前还不是交钥匙工程,而与一直占主导地位的成熟引线键合相比,该技术似乎非常年轻。由于特定外形封装尺寸或设备应用对性能的要求很高,代工封装公司或使用内部封装工艺的大型半导体制造商,因此采用年轻的技术需要仔细规划,以解决潜在的差距和障碍,以实现具有成本效益、高产量和可扩展的技术。I/O 密度将受到关键因素的限制,例如键合对准精度、焊盘或凸块尺寸和金属界面、晶圆或载体晶圆形状/翘曲、如果采用了 CMP 技术,界面均匀性、退火和 DT 限制、底部填充特性、凸块金属选择、应力诱导裂纹形成;必须谨慎处理此处未考虑的其他差距和风险,以确保
凭借 50 多年先进晶圆处理和运输经验,Entegris 持续提供安全可靠的 200 毫米晶圆加工解决方案。我们的 200 系列 200 毫米晶圆运输载体可满足当今 200 毫米晶圆厂的自动化、污染控制和生产力要求。这些晶圆载体专为先进晶圆运输而设计,可提供精确的晶圆存取、可靠的设备操作和安全的晶圆保护。
摘要:三氧化钼 (MoO 3 ) 是一种重要的过渡金属氧化物 (TMO),由于其在现有技术和新兴技术(包括催化、能源和数据存储、电致变色器件和传感器)中的潜力,在过去几十年中得到了广泛的研究。最近,人们对二维 (2D) 材料的兴趣日益浓厚,与块体材料相比,二维材料通常具有丰富的有趣特性和功能,这导致了对 2D MoO 3 的研究。然而,大面积真正的 2D(单原子层至几原子层厚)MoO 3 尚未实现。在这里,我们展示了一种简单的方法来获得晶圆级单层非晶态 MoO3,该方法使用 2D MoS2 作为起始材料,然后在低至 120°C 的基板温度下进行紫外臭氧氧化。这种简单而有效的过程可产生具有晶圆级同质性的光滑、连续、均匀和稳定的单层氧化物,这通过几种表征技术得到证实,包括原子力显微镜、多种光谱方法和扫描透射电子显微镜。此外,使用亚纳米 MoO3 作为夹在两个金属电极之间的活性层,我们展示了最薄的基于氧化物的非挥发性电阻开关存储器,该存储器具有低压操作和高开/关比。这些结果(可能可扩展到其他 TMO)将使进一步探索亚纳米化学计量 MoO3 成为可能,扩展超薄柔性氧化物材料和器件的前沿。关键词:晶圆级、单层、氧化钼、非晶态、电阻开关存储器
Kulicke&Soffa自2008年以来,英国和爱尔兰的Hub Dicing Blades专有分销商已被扩展到包括奥地利,德国,荷兰和葡萄牙。注释编辑此新闻稿是由Inseto(英国)发行的,受技术内容创建和通信机构声明(www.declaration.co.uk,+44(0)1522 789000)的限制。如果您对此公告有任何编辑询问,请联系Mandy Warrilow,新闻官员,mandy@declaration.co.uk。,如果您需要与本新闻稿有关的文章或任何其他形式的副本,请联系技术作者Richard Warrilow,Richard@declaration.co.uk。请致电+44(0)1264 334505与Matt Brown联系,或通过电子邮件(matt.brown@inseto.co.uk)与所有广告和赞助事务有关。关于Inteto(UK)Limited成立于1987年和ISO 9001:2015自2005年以来的认证,Inteto是针对半导体,微电动和高级技术领域的设备和相关材料的领先技术分销商,以及电子,自动化和工业制造的粘合剂。公司有三个部门,即:
为了分析 UBM 疲劳,使用热机械有限元模拟研究了圆形衬垫界面处的载荷。由于 Hutchinson 和 Sou [15] 推断出拉伸法向载荷的界面韧性远低于剪切载荷,因此重点关注法向载荷。模拟研究了 T = -40°C 至 125°C 的温度范围。在低温下 (T = -40°C) 存在最高的拉伸法向载荷。这可以通过焊球材料在低温下蠕变减少 [16] 来解释,这会导致更高的弹性应力。此外,在低温下可以检测到焊球的倾斜。倾斜是由 PCB 和封装的 CTE 不匹配引起的。因此,拉伸法向应力位于界面朝向封装周边的一侧(见图 3)。图 3 中的色标直观地显示了拉伸和压缩应力的定性分布。这些模拟结果与分层实验结果相一致(见图 1):在焊盘的相同外部区域也发现了分层。