根据与诺斯罗普·格鲁曼公司的协议,合作者将有一段预定的时间(“设计期”),使用诺斯罗普·格鲁曼公司提供的模型和 PDK 进行设计。设计期结束后,合作者需要在规定的截止日期前向代工厂提交设计,以便将其设计纳入工厂运行。合作者还需要提交其设计和文档,以便在 STARRY NITE IP 存储库中存档。一旦掩模完成流片,诺斯罗普·格鲁曼公司将使用该掩模制造晶圆。请注意,诺斯罗普·格鲁曼公司不会对电路进行直流或射频测试;整个工厂流程中都会测量掩模上的过程控制监视器 (PCM) 结构。b. 合作者同意公布设计提交和掩模流片时间表。c. 请注意,美国政府对哪些设计将投入生产拥有最终决定权
iCAP MTX ICP-MS 可确保最高水平的分析效率,同时易于使用,可显著减少员工培训时间。该仪器只需极少的维护即可实现高效运行。Thermo Scientific™ Qtegra™ 智能科学数据解决方案 (ISDS) 软件可无缝控制您的工作流程,从最初的仪器设置到日常操作再到报告结果。通过强大而可靠的自动化流程满足准确分析和可追溯数据的需求。
与电动汽车相关的行业中的中文OFDI可能在2023年创造了新的记录。在282亿美元的价格上,它尚未与2022年的297亿美元相匹配,但2023年的数字是保守的估计,其中不包括几个没有已知价格标签的大型项目,例如Byd的匈牙利工厂。中国电动汽车从北美转向欧洲,中东和亚洲。四分之三的中国投资进入了欧洲,中东和北非(MENA)和亚洲,欧盟和美国的自由贸易伙伴摩洛哥经历了最大的收益。ofdi跌至总数的10%。更多的局部电池制造正在推动投资。中国电池投资(由格林菲尔德项目驱动)越来越多样化,包括阳极和阴极等投入。中国电池制造商在海外扩张中带来了更多的供应链,这可能是为了响应不断增长的市场需求和重新发送压力。在2024年,我们预计中国电动汽车投资国外将保持强劲,但将从电池投资转变为欧洲,拉丁美洲和亚洲的电动汽车制造业。主要的驱动因素将包括中国放缓的房屋市场以及东道国经济对更高增值和创造就业投资的需求,以换取市场通道。由于监管不确定性,在北美的投资将保持波动,但墨西哥可以看到中国项目的涌入。中国电动汽车和电池公司越来越多地停留在岩石和艰难的地方。中国投资者越来越面对接待经济体的政治反弹,最著名的是美国试图限制中国对电动汽车供应链的影响。同时,北京对其EV
半导体价值链容易受到干扰,这对现代经济构成了相当大的风险。更好的数据对于决策者识别瓶颈、监控特定半导体类型的供需平衡以及管理干扰至关重要。本文提出了半导体类型和生产设施的通用分类法,以促进协调的数据收集和共享。该分类法将半导体产品分为四大类——“逻辑”、“内存”、“模拟”和“其他”——并根据其普及程度和特定功能细分为子类别。半导体生产设施根据所使用的技术和生产不同类型半导体的能力、安装的生产能力以及其他相关工厂(和公司)特征进行分类。该分类法将成为半导体生产数据库的基础,并将在未来进行修订,以跟上半导体技术的发展。
本文介绍了一种无需依赖载体晶圆即可直接放置芯片到晶圆的替代方法,该方法专门针对混合键合、3DIC 和集成光子学应用而设计。芯片到晶圆键合是异质垂直集成设备制造中的关键工艺,通常涉及在集成到目标晶圆之前将各个芯片放置到载体或处理晶圆上的中间步骤。这种传统方法增加了成本、复杂性、潜在的兼容性问题和工艺步骤。在本研究中,我们提出了一种简化的工艺,消除了对载体晶圆的需求,从而简化了集成并减少了制造步骤。利用大气等离子清洗,我们清洁并激活芯片和目标晶圆的表面,以促进直接放置键合。通过实验验证,我们证明了这种方法的可行性和有效性。我们的研究结果展示了成功的芯片到晶圆键合,界面污染最小,键合强度增强。此外,我们还探讨了大气等离子清洗参数对键合质量的影响,为工艺优化提供了见解。这项研究为芯片到晶圆键合提供了一种有前途的替代方案,提高了垂直集成电路制造的效率和简便性,特别是在混合键合、3DIC 和集成光子学应用领域。
8 三星电子有限公司三星先进技术研究所 (SAIT),韩国水原 16678 gwanlee@snu.ac.kr 摘要 (Century Gothic 11) 通过化学气相沉积 (CVD) 在具有外延关系的晶体基底(例如 c 面蓝宝石)上合成了晶圆级单晶过渡金属二硫属化物 (TMD)。由于 TMD 外延生长的基底有限,因此需要将转移过程转移到所需的基底上进行器件制造,从而导致不可避免的损坏和皱纹。在这里,我们报告了通过过渡金属薄膜的硫属化在超薄 2D 模板(石墨烯和 hBN)下方的 TMD(MoS 2 、MoSe 2 、WS 2 和 WSe 2 )的异轴(向下排列)生长。硫族元素原子通过石墨烯在硫族化过程中产生的纳米孔扩散,从而在石墨烯下方形成高度结晶和层状的TMD,其晶体取向排列整齐,厚度可控性高。生长的单晶TMD显示出与剥离TMD相当的高热导率和载流子迁移率。我们的异轴生长方法能够克服传统外延生长的衬底限制,并制造出适用于单片3D集成的4英寸单晶TMD。参考文献 [1] Kang, K. 等。具有晶圆级均匀性的高迁移率三原子厚半导体薄膜。Nature 520 , 656-660 (2015).[2] Liu, L. 等。蓝宝石上双层二硫化钼的均匀成核和外延。Nature 605 , 69-75 (2022) [3] Kim, K. S. 等人。通过几何限制实现非外延单晶二维材料生长。Nature 614 , 88-94 (2023)。
关键词:光子剥离、临时键合和解键合、薄晶圆处理、键合粘合剂 摘要 临时键合和解键合 (TB/DB) 工艺已成为晶圆级封装技术中很有前途的解决方案。这些工艺为晶圆减薄和随后的背面处理提供了途径,这对于使用 3D 硅通孔和扇出晶圆级封装等技术实现异质集成至关重要。这些对于整体设备小型化和提高性能至关重要。在本文中,介绍了一种新颖的光子解键合 (PDB) 方法和相应的键合材料。PDB 通过克服与传统解键合方法相关的许多缺点来增强 TB/DB 工艺。PDB 使用来自闪光灯的脉冲宽带光 (200 nm – 1100 nm) 来解键合临时键合的晶圆对与玻璃作为载体晶圆。这些闪光灯在短时间间隔(~300 µs)内产生高强度光脉冲(高达 45 kW/cm 2 ),以促进脱粘。引言近年来,三维 (3D) 芯片技术在微电子行业中越来越重要,因为它们具有电路路径更短、性能更快、功耗和散热更低等优势 [1]。这些技术涉及异质堆叠多个减薄硅 (Si) 芯片(<100 µm)并垂直互连以形成三维集成电路 (3D-IC) [2]。在现代 3D 芯片技术中,可以使用硅通孔 (TSV) 来代替传统的引线键合技术在硅晶圆之间垂直互连。减薄晶圆使得这些 TSV 的创建更加容易 [3, 4]。为了便于处理薄硅晶圆,需要对硅晶圆进行临时键合。在临时键合工艺中,次级载体晶圆充当主器件晶圆的刚性支撑,并利用两者之间的粘合层将两个晶圆粘合在一起。晶圆粘合在一起后,即可进行背面研磨和后续背面处理。背面处理后,减薄后的晶圆和载体堆叠
使用比较器技术结合圆闭合原理,无需参考单独校准的参考工件,即可对多面镜、分度台和旋转台以及角度编码器的角度划分进行全圆校准。后者是平面角度的自然守恒定律,自欧几里得时代以来就广为人知,表示平面上任何一点周围的角度之和等于 2 � 弧度 (360 � )。如果将圆分成 n 个角段 A 1 、A 2 、 。..、A n 以及每个角段与未知参考角 X 之间的差异进行测量,则闭合为数据提供了约束,从而能够为所有 n + 1 个未知数提供完整的解决方案。圆闭合是众多自证比较技术之一,采用多次测量以及对测量系统组件进行适当的重新排列。参考文献 [1] 回顾了此类技术及其在尺寸计量中的应用。
晶圆加工技术的趋势要求晶圆载体技术不断进步,以支持当今先进的半导体加工设施。我们的 20X 系列 200 毫米晶圆运输载体可满足当今 200 毫米晶圆厂的自动化、污染控制和生产力要求。这些晶圆载体专为先进的晶圆运输而设计,与传统的中低端晶圆载体相比,具有显著的性能优势,包括精确的晶圆存取、可靠的设备操作和安全的晶圆保护。
客户利益 在安装过程中,采用了 GF 管路系统提供的多种专业解决方案,例如 ProSite 和 Engineering,提供相关专业知识。客户获得了专业知识支持,并在有限的空间内构建了塑料管道模块,同时保持了所有组件的高纯度。除了根据其对高纯度和耐化学性的需求获得合适的可持续解决方案外,ASE 还通过依赖 GF 管路系统作为一站式解决方案提供商,而不是与多家供应商协调,与以前的项目相比节省了 10% 的工作时间。从长远来看,轻便、非常耐用且无腐蚀的管道系统将减少韩国晶圆清洁业务的维修需求和总体成本。