FZJ-3 REKO-3 流动反应器 强制流动条件下的 H2 重组 FZJ-4 REKO-4(在建) 压力容器 自然流动条件下的 H2 重组 FZK-1 A1 容器 圆柱形容器 湍流燃烧和爆轰,机械结构完整性 FZK-2 A3 容器 圆柱形容器 湍流燃烧和爆轰,通风爆炸,H2 分布 FZK-3 A6 容器 圆柱形容器 湍流燃烧和爆轰,机械结构完整性 FZK-4 12 米爆轰管 (DT) 圆柱管 湍流燃烧、DDT 和稳态爆轰,化学动力学 FZK-5 流动测试室 (TC) 矩形室通风燃烧和爆轰;H2 分布,通风系统测试。 FZK-6 部分通风爆炸管 (PET) 带可变开口的圆柱管 通风爆炸,湍流。火焰传播、火焰加速和 DDT FZK-7 A8 容器 圆柱形容器 湍流燃烧和爆轰、通风爆炸、H2 分布 FZK-8 爆炸弹 球形容器 可燃性极限、最小点火能量、层流火焰速度、化学 FZK-9 HyJet 水平/垂直氢气喷射 加压容器中的氢气释放、氢气浓度和 GC-1 168 m³ 开放式几何结构(内部有障碍物) 爆炸容器在开放、拥挤的几何形状中的爆炸 GC-2 1:3.2 比例海上模块爆炸容器在真实几何形状中的通风爆炸
摘要:由于其理想的特性,例如生物相容性,化学稳定性,负担得起的价格,耐腐蚀性和易于再生,因此最近在P-MFC中最广泛使用了碳电极。通常,基于碳的电极,尤其是石墨,是在非常高温下基于石油衍生物的复杂过程产生的。本研究旨在从生物味和木炭粉中产生电极,以替代石墨电极。通过Robinia Pseudoacacia和Azadirachta Indica木材的碳化获得了用于生产电极的碳。这些碳被粉碎,筛为50 µm,并用作电极制造的原材料。使用的粘合剂是源自椰子壳作为原材料的生物味。生物诉的密度和焦化值揭示了其作为电极制造煤炭螺距的良好替代品的潜力。通过将每种碳粉的66.50%和33.50%的生物味混合来制造电极。将所得的混合物模制成直径8毫米的圆柱管,长度为80毫米。在800°C或1000℃的惰性培养基中对获得的原始电极进行热处理。通过四点方法获得的电阻率表明,N1000的电阻率至少比所有发达的电极低五倍,而两倍的电阻率是G.傅立叶转换红外光谱(FTIR)的两倍,用于确定样品的组成特征,表面粗糙度由ATOMIC ERTORIC MIRCOPOPY(AFM)表征(AFM)。通过电阻抗光谱(EIS)确定电荷转移。电极的FTIR表明N1000的频谱与G相比与G的频谱更相似。EIS显示了离子的高离子迁移率,因此N1000与G和其他离子的电荷转移更高。AFM分析表明,N1000在这项研究中具有最高的表面粗糙度。
摘要外周神经损伤(PNI)代表了严重的临床和公共卫生问题,因为它的自发恢复较差,自发恢复不良。与自体移植相比,自体移植仍然是诊所中长距离周围神经缺陷的最佳实践,使用基于聚合物的生物降解神经引导导管(NGC)的使用一直在获得动量,替代了指导严重PNI的维修而无需进行次级手术和供体培训和供体的养蜂组织。然而,简单的空心圆柱管几乎不能超过再生效率的自体移植,尤其是在关键尺寸的PNI中。随着组织工程技术和材料科学的快速发展,在过去几十年中,已经出现了各种功能化的NGC来增强神经再生。从脚手架设计方面的方面,特别关注可生物降解的聚合物,本综述旨在通过解决生物材料选择,结构性设计和制造技术的繁重需求来总结NGC的最新进展,从而对生物兼容,范围造成的范围,机械效率和机械效率,工业效率,机械效率,工业效率,工业效率,工业效率,机械效率,机械效率,机械效率,机械效率,机械效率,机械效率,机械效率,机械效率,释放,效益,机械效率,机械效率,释放效率,工业效率,工业效率,既定效率NGC的神经再生潜力。此外,比较并讨论了几种市售的NGC及其调节途径和临床应用。最后,我们讨论了当前的挑战和未来的方向,试图为理想的NGC的未来设计提供灵感,这些设计可以完全治愈长距离外围神经缺陷。
