由小有机化合物引起的分析干扰继续对早期药物发现构成巨大挑战。已经开发了各种计算方法来识别可能引起测定干扰的化合物。但是,由于可用于模型开发的数据稀缺,这些方法的预测准确性和适用性受到限制。在这项工作中,我们介绍了E-Guard(专家指导的鲁棒干扰复合检测的增强),这是一个新颖的框架,试图通过整合自我介绍,积极的学习和专家指导的分子产生来解决数据稀缺和失衡。e-guard迭代地用与干扰相关的分子丰富了训练数据,从而产生了具有出色性能的定量结构交流关系(QSIR)模型。我们以四个高质量数据集,氧化还原反应性,纳米酸酯酶抑制和萤火虫荧光素酶抑制的示例,证明了电子方形的实用性。与未经e-Guard数据增强的模型相比,这些数据集的MCC值最高为0.47,其富集因子的改进有两个或更高。这些结果突出了电子保守物作为缓解早期药物发现中测定干扰的可扩展解决方案的潜力。
摘要:几个世纪以来,香棍已被广泛用于宗教,文化和国内环境中,燃烧时会发出宜人的香气。虽然他们的香水具有一种平静和精神上的联系感,但燃烧的香气可以将有害物质释放到空气中,这可能会带来健康风险。香棒通常由木材,草药和树脂等天然成分组合制成,但是诸如香水,着色剂和燃烧辅助物等合成添加剂也通常用于增强其外观和性能。被燃烧时,这些添加剂可以释放有毒物质,包括颗粒物(PM),挥发性有机化合物(VOC)和多环芳烃(PAHS)。暴露于这些排放已与一系列健康问题有关,从呼吸道刺激和哮喘到更严重的疾病,例如心血管疾病和癌症。本评论论文研究了香棍的毒理学方面,重点是分析添加剂,产品燃烧及其健康影响。关键字:香棒,健康风险,有毒排放,燃烧副产品,合成添加剂1。引言香已经用于各种目的的不同文化和文明已有数千年的历史,包括宗教仪式,精神实践,净化,芳香疗法,甚至是药用应用。虽然不可否认,虽然象征性和文化的重要性是不可否认的,但越来越多的合成添加剂的使用以及在封闭空间中燃烧的广泛燃烧引起了人们对其潜在健康影响的担忧。与此近年来,法医毒理学已成为评估使用香的潜在风险的重要工具,尤其是与其制造业中使用的添加剂以及在燃烧过程中释放的产品相关的添加剂。a)历史:香的历史可以追溯到远古时代,有证据表明其在埃及,印度,中国和美索不达米亚使用。古埃及人在宗教仪式上使用香并抵御邪灵,而在印度,它成为印度教和佛教仪式不可或缺的一部分。香中的中国文本也提到了它与精神领域进行交流。在中东,经常被燃烧以营造出愉悦的氛围和出于药用目的,甚至在贸易路线中发挥了作用,尤其是将阿拉伯半岛与地中海联系起来的著名的“香气”。的香,进一步强调了其宗教意义。在这些古老的文明中,香是由芳香木材,树脂(例如,乳香和没药)和草药等天然成分制成的,当燃烧时会产生愉悦的气味。这些天然成分因其精神和药用特性而受到评价,并且它们的使用持续了几个世纪。b)现代用法和添加剂:在现代,香气的使用已经超越了宗教和精神目的,成为家庭,办公室,水疗中心和冥想中心的流行物品。
关键词:GaN、焊料、AuSn 焊料、溅射、共晶、芯片粘接摘要对于 GaN MMIC 芯片粘接,经常使用 80%Au20%Sn 共晶焊料。通常的做法是使用预制件 AuSn 将芯片粘接到 CuW 或其他一些基板上。在此过程中,操作员可能需要将预制件切割成芯片尺寸,然后对齐预制件、芯片和基板。由于操作员需要同时对齐三个微小部件(预制件、芯片和基板),因此这是一个具有挑战性的过程,可能需要返工。此外,预制件厚度为 1mil(在我们的例子中),这可能导致过量的焊料溢出,需要清理,因为它会妨碍其他片外组装。整个芯片粘接过程可能很耗时。在本文中,我们描述了一种在分离芯片之前在 GaN 晶圆上使用共晶成分溅射靶溅射沉积共晶 AuSn 的方法。它消除了预制件和芯片的对准,并且不会挤出多余的 AuSn。通过使用共晶溅射靶,它还可以简化靶材制造。下面给出了芯片粘接结果。引言宽带微波 GaN MMIC 功率放大器在国防和通信应用中具有重要意义。随着设备性能的提高,芯片粘接变得非常重要,因为它会极大地影响 MMIC 的热预算。80%Au/20%Sn 焊料已用于半导体应用超过 50 年,通常作为冲压预制件。然而,由于需要将 MMIC 芯片中的多个小块和焊料预制件对准到载体上,因此芯片粘接过程可能很繁琐且耗时。在芯片分离之前在整个晶圆上溅射沉积 AuSn 将大大简化芯片粘接过程。然而,溅射的 AuSn 成分对于正确的焊料回流至关重要。由于 Au 和 Sn 的溅射产率不同,AuSn 溅射靶材的化学性质和沉积的 AuSn 薄膜之间存在显著的成分变化 [参考文献 1]。下图 1 显示了 Au-Sn 相图。通过仔细控制溅射参数(功率、压力和氩气),我们能够从共晶成分溅射靶中沉积共晶 AuSn。制造共晶成分溅射靶要容易得多/便宜得多。
直接键合技术不断发展,以应对“更多摩尔”和“超越摩尔”的挑战。自 20 世纪 90 年代绝缘体上硅 (SOI) 技术的出现以来,CEA-Leti 已在直接键合方面积累了丰富的专业知识。从那时起,CEA-Leti 团队一直在积极创新直接键合,以拓宽应用领域。该技术基于室温下两个紧密接触的表面之间的内聚力。然后,范德华力(氢键)和毛细桥产生所需的粘附能。键合后退火将弱键转变为共价键,最终形成一块材料。随着混合键合的出现,直接键合现在不仅解决了基板制造问题,还解决了 3D 互连领域的问题。本文介绍了 CEA-Leti 开发的不同直接键合技术及其在微电子行业和研发中的应用。在文章的第一部分,简明扼要地介绍了直接键合物理学。然后,概述了最先进的键合技术,包括晶圆对晶圆 (WTW) 混合键合、芯片对晶圆 (DTW) 混合键合和 III-V 异质键合。针对合适的应用领域,比较了每种技术的优势、挑战、应用和利害关系。第三部分重点介绍 CEA-Leti 在 ECTC 2022 和 ESTC 2022 上展示的最新混合键合 D2W 结果。讨论了集成挑战以及专用设备开发的作用。最后一部分介绍了潜在的市场和相关产品,并以具有硅通孔 (TSV) 和多层堆叠的芯片为例。
SEMI E62 描述了 FOSB 开门装置的特性和基本功能。E62 是针对设备配置的非常具体的标准,包括定位销、密封区域和锁销形状、位置、运动和扭矩。300 毫米 FOSB 必须与这些功能配合使用,但精确的配合功能尺寸、位置和设计由载体制造商决定。与 E62 FOSB 开门器配合的 FOSB 功能由 Entegris 设计规范定义。一般而言,这种兼容性涉及 E62 FOSB 开门器功能周围的适当间隙和相对位置。
本用户手册及其所含信息为 MGI 所有,仅供其客户根据合同使用本手册所述产品之用,不得用于其他目的。未经 MGI 事先书面同意,任何个人或组织不得全部或部分转载、复制、修改、分发或向他人披露本用户手册。任何未经授权的人员不得使用本用户手册。
本论文的目的是研究使用 ECR(电子回旋共振)氢等离子体技术的低温原位清洗工艺和使用 HF 浸渍法的原位清洗工艺,用于低温硅同质外延生长。在 MS-CVD(多室化学气相沉积)反应器上安装了负载锁室,以降低将污染物引入系统的可能性。选择 ECR 等离子体系统是因为与传统的 RF(射频)系统相比,它可以以良好调节的方式输送更高密度的低能离子。选择氢气是因为氢气质量轻,并且能够与表面污染物发生化学反应。在原位清洗的晶圆顶部沉积外延层,并通过 XTEM(横截面透射电子显微镜)和 RBS(卢瑟福背散射光谱)技术研究外延层和外延层/衬底界面的结构质量。使用 SIMS(二次离子质谱)检测界面处的氧和碳污染物。
用于 mmWave 封装测试的 xWave 平台 • 信号完整性 – 短阻抗控制共面波导 (CPW) – 测试仪和 DUT 之间的 1 个转换(连接器到引线框架) – DUT 球接触 CPW • 集成解决方案(PCB/接触器合一) – 包括从测试仪到 DUT 的完整 RF 路径 – 用于电源和控制信号的 Pogo 引脚 • 生产封装测试解决方案 – 坚固的引线框架可持续数百万次循环 – 机械组装完全可现场维护 – 包括校准套件(s 参数) – 用于三温测试(-55 至 155°C)的 CTE 匹配材料
“自然发展了一些有史以来最精致,最先进的材料。这些天然发生的纤维的物理,机械和化学特性可以帮助解决我们面临的许多工程挑战,但是没有人能够使用诸如静电纺丝和湿旋转的现有技术在工业范围内制造这些生物纤维,”加拿大弗拉姆普顿(John Frampton)博士在Dalhousie和Bi Bioficific官员的加拿大生物生物生态学研究主席说:“使用静电纺织品和湿旋转旋转。“我们的3D生物纤维团队已经解决了使用专有的可扩展过程制作高质量生物纤维的问题,该过程已经比当前技术高至少600倍。迄今为止,制造量表的问题限制了这些生物复合材料的工业应用。凭借我们扩展生产的能力,我们希望改变生物复合市场!”
范围和章节大纲 本章旨在简要概述晶圆级封装 (WLP),包括晶圆级芯片规模封装 (WLCSP) 和扇出型封装,作为这些技术未来发展路线图的背景。本文并非旨在提供详细的历史,也不是与这些技术相关的所有可能的结构、工艺和材料的详细描述。在有关该主题的各种文章和书籍中可以找到更详细的信息。本章试图回顾 WLP 技术迄今为止的发展,并预测未来的需求和挑战。 晶圆级封装是指在晶圆仍为晶圆时对芯片进行封装,可以单独封装,也可以与其他芯片或其他组件(例如分立无源器件)或功能组件(例如微机电系统 (MEMS) 或射频 (RF) 滤波器)组合封装。这允许使用异构集成进行晶圆级和面板级封装。尽管从定义上讲,WLP 历来都是使用直径为 200 毫米或 300 毫米的圆形晶圆格式生产的,但多家供应商正在将类似的制造方法扩展到矩形面板格式。这将允许不仅在晶圆级基础设施(晶圆级封装,或 WLP)上制造异构封装,而且还可以在面板级基础设施(面板级封装,或 PLP)上制造异构封装。本章将包括异构集成路线图 (HIR) 的 WLP 和 PLP 格式。本章分为 7 个部分:1. 执行摘要 2. 晶圆级封装的市场驱动因素和应用 3. 晶圆级封装概述:技术、集成、发展和关键参与者 4. 技术挑战 5. 供应链活动和注意事项 6. 总结、最终结论和致谢 7. 参考文献
