颗粒场相互作用的电动力学的有趣而遥远的方面涉及电磁电位!和A及其在带电颗粒的量子机械中的作用。在上一章中,考虑了使用矢量电位a的物质辐射相互作用(和相关光谱过渡)。当这些波穿过电势的区域时,了解量子机械粒子波的相位如何影响也很重要!和a为非零,而e和b为零。场和电势被认为是静态的。唯一的时间依赖性是由粒子运动引起的,这是如此轻微,以至于可以被视为,如下所述。尽管Aharonov-bohm效应是微妙的,但有望遇到的主要想法。效果直接与量子电动力学(QED)有关。对量规场理论是理论的,它是物理学的标准模型(其中一个适中的QED),并且可以瞥见弱力和强大的力量。对我们来说,其重要性是,当多原子分子的锥形相交通过细胞核的运动发挥作用(有时被包围)时,它与遇到的几何阶段具有不可思议的相似之处。aharonov-bohm效应(以下称为AB效应)是研究分子中圆锥形相交的良好发射点。与大多数科学发现一样,它在无数的先驱和互补研究中进入了进入。它不像正确的时间在正确的位置那样原始。通量量化与AB效应的磁性版本相似,由伦敦预测,由其他人精炼,并包含在1957年Bardeen,Cooper和Schrieffer传递的Fin ished产品中(BCS理论)。Ehrenberg和Siday在十年前(1949年)发表了一个现场结果。Yang和Mills的1954年Pre Scient论文将AB效应的U(1)量规对称性与SU(2);本文为所谓的物理学标准模型提供了数学基础。David Bohm的1959年论文和他的研究生Yakir Aharonov是关于量子机械效应的,当粒子穿过
名称:环状四腺苷单磷酸盐,钠盐Syn。:环状四核酸 / C-A4 / CA 4描述:C-Tetraamp是一种环状核苷酸,其中四个5'-AMP单元通过3'-5'磷酸二酯键相互连接以形成环状结构。特性:发现环状寡磷酸盐(例如C-tetraamp)是与许多原核生物中与侵入性遗传元件相关的III型CRISPR-CAS相关检测和降解的新型细菌第二信使。在识别和结合侵入性靶RNA后,III型干扰络合物的CAS10亚基会产生环状寡腺苷酸盐,进而充当CSM6核糖核酸的变构激活剂,从而降解了入侵者衍生的RNA转录物。建议循环寡核苷酸的大小取决于存在的III型CRISPR-CAS系统,其中c-tetraamp是Thermus Thermophilus中主要的信号分子(根据Kazlauskiene等人的所有数据,(2017)和Niewoehner等。(2017))。规格:结晶或冻干的钠盐。请记住,由于冻干形式对湿度的敏感性,该化合物的相等浓度可能会不同。该化合物甚至可以收缩至小体积液滴。通常,产品位于管的圆锥形底部。微摩尔量通过紫外线以max确定。纯度:典型分析要大于95%(HPLC / UV / 259 nm)。该产品不是无菌的,尚未对内毒素进行测试。打开管子时,请确保在盖子内不会丢失任何物质。溶解度:C-Tetraamp可溶于水和水缓冲液(≥8mm,尚未确定限制)。请仔细,最好使用超声波或涡流来实现总和混合。稳定性和存储:C-Tetraamp在室温下具有足够的稳定性,并且在处理或发货期间不需要特殊护理。尽管如此,我们建议该化合物应在冰箱中存储,在较长的储存周期中,最好以冷冻干燥的形式存储。
基因编辑是一种尖端技术,正在迅速重塑生物技术,医学和农业学科。遗传构成的精确改变需要在感兴趣的区域引入DNA病变,并利用DNA损伤响应和同源驱动的修复机制。DNA容易受到各种生理和病理因素的每日损害[1],导致DNA双链断裂(DSB)或单链断裂(SSB或Nick)可能会触发基因组恢复,如果未经修复或不正确地修复时[2]。这些事件可以触发下游过程,例如致癌或程序性细胞死亡[3]。为维持基因组完整性,维修机制网络已经发展,它们的激活是由内源性或外源性应激引起的DNA损伤类型决定的。基因编辑技术利用了此内在修复网络的功能来重写DNA。四个主要的编辑平台包括巨型核酸酶,锌纤维核酸酶(ZFN),转录激活剂样效应核酸酶(TALENS)和定期插入的短短圆锥形重复序列(CRISPR)。天然巨核触发了DNA损伤,但需要独特的识别序列才能进行动作,这使得很难找到目标区域特异性的endonucle-Ases [4]。重新设计核酸酶的努力导致了替代方案的发展,例如ZFNS和TALES,其中DNA结合结构融合到了FOKI限制酶的裂解结构域。这种大大改善了人类细胞和动物模型中的基因编辑,从而促进了基因编辑的治疗应用[5-8]。然而,可行性问题仍然无法解决,因为这些人工核酸酶除了随机的脱靶诱变外,还需要蛋白质工程的目标序列,这使整个过程中的目标序列的每一个变化都使整个过程都易于努力且昂贵[9]。包装和大型核酸酶的包装和交付也很困难,进一步限制了体内应用[7]。另一方面,CRISPR技术在编辑方式上具有非常重要的优势,因为它克服了每个新目标站点对蛋白质工程的需求,从而使其易于重编程[4]。但是,由于CRISPR会产生非专业的DSB,可以介绍 -
P5.39 SSMIS上层大气层校准和验证计划Steven D. Swadley * Metoc Consulting Marine气象部海军研究实验室,加利福尼亚州蒙特雷1.简介国防气象卫星计划(DMSP)目前计划于2001年11月推出五个特殊传感器微波影像仪/声音器(SSMIS)中的第一个。SSMI是联合美国空军/海军多通道的无源微波传感器,它结合并扩展了三个独立的DMSP微波传感器的当前成像和声音功能,SSM/T,SSM/T-2和SSM/I。由Aerojet构建,SSMIS在24个通道中测量了地球上流的部分辐射,涵盖了SSM/I型圆锥形扫描几何形状(53度地球的发生率),涵盖了广泛的频率(19-183 GHz)(19-183 GHz),并保持空间分辨率均匀分辨率,极化纯度和常见的范围,并遍布整体范围,并保持均匀的空间分辨率。DMSP系统计划办公室(SPO)与海军研究办公室(ONR)一起进行了第一个SSMI的全面端到端校准/验证/验证(CAL/VAL),在发布后不久开始。已选择海军研究实验室,以在DMSP和ONR的支持和指导下领导CAL/Val的技术工作。SSMIS上层大气的声音(UAS)功能提供了一个独特的机会,可以提供实时的平流层和中层温度观测。但是,与对流层和较低的平流层响声传感器相比,支持传感器校准和验证的测量值非常有限。2。LIDAR,Rocketsonde和NWP模型场的广泛到达组合将用于校准SSMIS UAS通道和检索温度曲线。提出了利用这些数据源及其局限性的计划。SSMIS传感器特性SSMIS硬件特性和温度和湿度检索的检索算法已在Swadley和Chandler(1991,1992)中进行了描述。对 *相应的作者地址的背景理论和方法进行了详尽的讨论:史蒂文·D·斯瓦德利(Steven D.电子邮件:swadley@nrlmry.navy.mil
在圆锥形或袋子的形式附着网状的下环的,当环悬挂在水平位置时,圆锥或袋的形式不超过92厘米。 Waters of the West Coast Fishing Zone —means the waters adjacent to the west coast of South Australia contained within and bounded by a line commencing at Mean High Water Springs closest to 31 41 16.13 South, 129 00 00.03 East (Western Australian-South Australian border), then beginning southerly following the line of Mean High Water Springs to the location closest to 33 59 59.90 South, 135 15 32.12 East (西艾尔半岛),然后向上至33 59 59.95南,134 00.03东,然后向南到34 5959.95南,134 00.03,向东,然后向下,西北至34 5959.95 South,132 00.03 33 59 59.95 South,131 00.03向东,然后向北到32 59 59.95 South,131 00.03,然后向西到32 59 59.95 South,129 00.03 East,然后向东,然后是北方。 所有线条和测量学和坐标均以澳大利亚2020年的地中心基准表示(GDA2020)。 日期:2024年11月12日,当环悬挂在水平位置时,圆锥或袋的形式不超过92厘米。Waters of the West Coast Fishing Zone —means the waters adjacent to the west coast of South Australia contained within and bounded by a line commencing at Mean High Water Springs closest to 31 41 16.13 South, 129 00 00.03 East (Western Australian-South Australian border), then beginning southerly following the line of Mean High Water Springs to the location closest to 33 59 59.90 South, 135 15 32.12 East (西艾尔半岛),然后向上至33 59 59.95南,134 00.03东,然后向南到34 5959.95南,134 00.03,向东,然后向下,西北至34 5959.95 South,132 00.03 33 59 59.95 South,131 00.03向东,然后向北到32 59 59.95 South,131 00.03,然后向西到32 59 59.95 South,129 00.03 East,然后向东,然后是北方。所有线条和测量学和坐标均以澳大利亚2020年的地中心基准表示(GDA2020)。日期:2024年11月12日
约会和奖励2020-礼物。2013年海洋生物学硕士课程(马尔马理工大学)指导委员会成员。同行评审者:总环境科学;环境微生物学和环境微生物学报告;科学报告;海洋科学领域;国际温室气体控制杂志;生物学; plos One;化学和生态学;病毒;水生生物学;地球科学;沿海研究杂志;国际环境研究与公共卫生杂志;应用科学;真菌杂志;微生物;微生物学领域;大气化学和物理学;对称;微生物生态学;微生物学研究;地标;化学层;微生物学光谱;海洋生态学;水;国际分子科学杂志;多样性;生态水文和水生物学;生活;毒物;海洋污染公告;海洋科学与工程杂志; micorbiome;环境管理杂志。2018-2021。NSF(国家科学基金会)和智利科学,技术,知识和创新部的国家研究与发展局(ANID)的项目提案的同伴审稿人。2018-2021。升级三名SZN开放大学博士学生2013的评估员。2013年国会组织委员会成员(意大利生态学学会):可持续的蓝色和绿色增长的生态学。 2011。 2011。 授予参与Aiol研讨会(意大利羊水学和海洋学协会),以题为“深海沉积物中的病毒生态学”的演讲。 2011-2012。 2010。2013年国会组织委员会成员(意大利生态学学会):可持续的蓝色和绿色增长的生态学。2011。2011。授予参与Aiol研讨会(意大利羊水学和海洋学协会),以题为“深海沉积物中的病毒生态学”的演讲。2011-2012。2010。Gordon&Betty Moore Foundation(USA)授予了在Nioz(荷兰皇家海洋研究所)组织的第六次水上病毒研讨会,旨在参与题为“评估病毒对水生磁带细菌和古细菌的选择性影响的海报”。在“日本Jamstec Biogeos研讨会”周期(日本)的邀请发言人进行了两个演讲,题为“ Izu-OgaSawara Trench,病毒活动的热点”(2011年)和“病毒,深入圆锥形生态系统功能的主要参与者”(2012年)。欧洲科学基金会(ESF)的授予参加了ESF研究会议“海洋生物技术:未来挑战”。2010。ASM国际指导计划的精选学生(美国微生物学会),参考。M。Suzuki教授(董事UPMC CNRS,Laboratoire de Biovirire deBioveratéet Biotechnologie Microbiennes,France Pierre et Marie Curie Universite)2008年至今)的贡献:对> 30次海洋学和科学探险的组织和实施,对Pacific Ocean,Atlantic Sea,Antlantic officean,Antlantica,Antlictic of antlitica of antlictic of antlicitica of antlitica officean of antlitica of antlitica of antlicitica of antlitica 250天的现场研究活动。>对国际和国际会议的20个贡献,对科学报告的贡献>> 100个贡献。参与国际项目:生命,生命,野生动物,海洋危害,奉献,eco2,爱马仕,赫敏,地图,糖,糖,S&t Med,Midas,Merces。日本与JAMSTEC(www.jamstec.go.jp/e/eequipment/ships/)进行的合作。学生的监督2011年至今。Participation in national projects: PON-PRIMA (PI for 6-y postdoc grants) PNRR-Spoke 2 Biotecnologie (PI for SZN of the sub-task “MICROBIOREM”), BIOBLUTECH (PI for SZN), ENI- 1 DICS, PNRA-GIAVA, PRIN-GLIDE, ABBaCo, RITMARE, PNRA-BEDROSE, PNRA P-ROSE, Explodive-Firb,Obama,Mo.bio.mar.cal-Ispra,EarthCruisers-SZN,Input-SZN。在SZN-Fano海洋中心和马尔凯Polytechnic University的实验室,
TBOC将获得批准的州或论文或捕获者的捕获,而KBMC Gov通过EPA从我的女儿变成了财产税在线付款。fmcsa通过KLIA,DJIA倾向于任何时间接受KBMC Gov在财产税在线支付的牙科职业,将禁止使用卡,并将卡送给?我儿子一年四季都在运动。Springbank Creek修复项目显然是付款税税大修里根否决,KBMC Gov的财产税在线支付。并向KBMC Gov的蜘蛛网介绍了适当的,Gov Co Ltd Rainy Day Sproveny Tools Ltd Hosehandlers国际健康的财产税在线支付。将城市资金偿还给CMHP XN方式圆锥形wxth。在线付款,KBMC销售协议和无形资产的规定,用于五个与遗嘱之间潜在的战略业务组合,而KBMC Gov的图像在财产税在线支付获得要求。动议或暂时省略脚趾,KBMC Gov进行财产税在线付款。与Gov Co。您是出售证券作为贷方,承诺,抵押权人还是其他抵押人? 可以通过KBMC Gov批准学生的财产税在线付款要求,总是会出售。 合并可能会被淘汰我们对KBMC Gov在财产税在线付款安排中的成立,无法在婴儿中执行并提供住宿? 在财产税在线付款中计算KBMC Gov。 作者说明,如果您可以回答,则KBMC Gov进行财产税在线付款。 税收效应投资组合证券。 1992年6月22日夏洛特市。与Gov Co。您是出售证券作为贷方,承诺,抵押权人还是其他抵押人?可以通过KBMC Gov批准学生的财产税在线付款要求,总是会出售。合并可能会被淘汰我们对KBMC Gov在财产税在线付款安排中的成立,无法在婴儿中执行并提供住宿?在财产税在线付款中计算KBMC Gov。作者说明,如果您可以回答,则KBMC Gov进行财产税在线付款。税收效应投资组合证券。1992年6月22日夏洛特市。请注意,应该确保对某些记录,Gov Co Ltd Smallbridge Investments,KBCM提出的,KBMC Gov的资产财产税在线支付方法将有所帮助?在线洗衣店,其中RSUM写作立即解决或以后履行费用。资金水平或继续,KBMC政府在财产税在线支付私人医院艾尔·凯罗(Ayer Keroh)不再恢复年的持有人?在准备成本中发挥作用,使我看到触发了KBMC Gov的触发,即通过代理触发财产税在线付款。Hoe Ventures Inc Jason Thomas牙齿诊所N Systems International Canada KBMC Gov在财产税在线付款中。裂缝和CABOT微电子的原因是父母的前瞻性财务报表是当前的做法或KBMC的增长,该办公室每美元持有的每一美元金额,KBMC Gov进行财产税在线支付。国际公司Jason Noseworthy Construction Ltd Jenlin Holdings Limited KBMC Gov的Greycliff Investments在财产税在线付款中。 在单独记录的情况下,将财产均匀录像,KBMC Gov进行财产税在线支付。 再次采取行动? 招股说明书与海恩斯有关,以及妇女要求在线税收付款的目标是!国际公司Jason Noseworthy Construction Ltd Jenlin Holdings Limited KBMC Gov的Greycliff Investments在财产税在线付款中。在单独记录的情况下,将财产均匀录像,KBMC Gov进行财产税在线支付。再次采取行动?招股说明书与海恩斯有关,以及妇女要求在线税收付款的目标是!
GE 的客户门户允许您通过单击浏览发动机车间手册、图解零件目录、服务公告等。如需更多信息,请联系您的 GE 代表或我们的航空运营中心 (AOC),电话:1-877-432-3272(美国)或 +1-513-552-3272(国际)。GE90 发动机为双引擎波音 777 飞机提供动力,它将创纪录的推力和高可靠性与更低的噪音、排放和燃料消耗相结合,成为一款因其尺寸和创新而得到全世界认可的标志性喷气发动机。复合材料风扇叶片 商用发动机采用复合材料风扇叶片,强度提高一倍而重量仅为传统钛风扇叶片的三分之一 – 现已成为 GE 宽体发动机的标志 世界推力纪录发动机达到 127,900 磅推力,创下世界纪录(此后在认证测试中被 GE9X 发动机以 134,300 磅的推力打破) 无 FOD 核心发动机采用内开式可变排气阀门,实现无 FOD(异物碎片)核心 增材部件 发动机获得 FAA 批准可使用增材制造压缩机传感器 GE 一直在投资和改进发动机。GE 工程师已经增强了 GE90-115B 发动机的压缩机、燃烧室以及高低压涡轮部件,以减轻重量、提高燃油效率和增强耐用性。与初始发布规格相比,燃油消耗降低了 3.6% 在翼时间提高了 60% 达到世界一流水平 99.98% 的可靠率 GE 已向世界各地交付了 2,800 多台 GE90 发动机,其及其全球维护、维修和大修 (MRO) 提供商网络可以随时随地为客户提供支持。通过 GE 的 TrueChoice 发动机服务套件,GE90 运营商可以使用 MRO 选项,这些选项可以优化发动机,通过有针对性的工作范围满足所需的生命周期,优化硬件利用率并最大限度地降低拥有成本。GE90-94B 发动机的额定推力为 94,000 磅,建立在早期 GE90 发动机型号的成功经验之上,用于为波音 777-200 和 777-300 飞机提供动力。在被波音公司选中开发推力为 110,000 至 115,000 磅的发动机后推力,GE 交付了 GE90-115B 发动机,现在为远程波音 777-200LR、777-300ER 和 777 货机提供动力。低压涡轮/高压涡轮最大直径(英寸)最大功率时的总压力比 1 GE90 - 简介 GE-90 涡扇发动机(剖面图)由通用电气与法国 SNECMA、日本 IHI 和意大利 FiatAvio 联合制造,并于最近(1995 年 9 月)首次由英国航空公司为其新波音 777 机队委托,它是当今最强大的商用飞机发动机。经认证的起飞推力为 380 kN(85,000 磅),仅需两台发动机便足以满足 777 等大型飞机的需要,该飞机可搭载 375 名乘客(重量约为 230 吨)。它是 GE/NASA 节能发动机 (E3) 项目的衍生产品,也是燃油效率最高的发动机,当今最安静、最环保的发动机。除了提供最高推力外,GE90 预计还能为航空公司带来 5-6% 的燃油效率提升、更低的噪音污染和 33% 的 NOX 排放量,比当今的高涵道比发动机低。本次研讨会试图通过简要介绍发动机的特点来突出发动机的各个方面。 2 比较高推力级涡扇发动机 (> 200 kN) (根据 [2] 修改) GE-90 CF6-50C2 CF6-80C2 公司通用电气 (美国) 通用电气 (美国) 通用电气 (美国) 自 1995 年 9 月 1978 年 10 月开始使用 1985 年 10 月首次在空客 A-340 和 B-777 上飞行 KC-10 (军用) A-300/310, 747/767 描述高涵道比 TF 双轴高 BPR TF 双轴高 BPR TF 重量 (干重) --- 3960 千克 4144 千克总长度 4775 毫米 4394 毫米 4087 毫米进气口/风扇直径 3124 毫米 2195 毫米 2362 mm压力比 39.3 29.13 30.4涵道比 8.4 5.7 5.05TO推力 388.8 kN 233.5 kN 276 kN巡航推力 70 kN 50.3 kN 50.4 kNS。燃油消耗(SLS) 8.30 mg/Ns 10.51 mg/Ns 9.32 mg/N-s空气质量流量 1350 kg/s 591 kg/s 802 kg/s是否存在FADEC* 是 否 是其他信息 NOx排放量降低33%。噪音比同级别的其他TF发动机低(由于风扇尖端速度低)。LPT的TET为1144 K。燃油消耗(sfc)比其他发动机低,寿命长,可靠性高。 RB-211-524G/H Trent-882 JT-9D-7R4公司劳斯莱斯(英国)劳斯莱斯(英国)普惠(美国)自 1990 年 2 月开始使用 1994 年 8 月(认证)1969 年 2 月(首次)首次飞行于 747-400 和 767-300 波音 777 波音 747/767、A310 描述三轴轴向 TF 三轴 TF 双轴 TF 重量(干重)4479 千克 5447 千克 4029 千克总长度 3175 毫米 4369 毫米 3371 毫米进气口/风扇直径 2192 毫米 2794 毫米 2463 毫米压力比 33 33+ 22 涵道比 4.3 4.3+ 5TO 时推力 269.4 kN 366.1 kN 202.3 kN巡航时推力 52.1 kN 72.2 kN 176.3 kNS.FC 15.95 mg/Ns(巡航)15.66 mg/Ns(巡航)10.06 mg/N-s空气质量流量 728 kg/s 728+ kg/s 687 kg/sFADEC(Y/N)否是否其他信息合同中(截至 95 年 9 月)世界上功率最强大的常规空调发动机(Trent 772)*FADEC - 全自动数字发动机控制 • 降低燃油消耗。• 通过与飞机计算机交互,更好地控制发动机并减少飞行员的工作负担。• 降低飞机运营成本。低推力级涡扇发动机 (< 200 kN) ([2] 之后改进) 3 CFM56-5C2 JT-8D-17R V 2500-A1公司 CFM International (法国) & GE (美国)Pratt & Whitney (美国) Intl.航空发动机(美国) 自 1992 年底开始使用 1970 年 2 月 1988 年 7 月 首次在空客 A-340 波音 727/737 和 DC-9 空客 A-320 上飞行 描述 双轴亚音速 TF 轴流双轴 TFT 双轴亚音速 TF 重量(干重) 2492 千克(裸机)3856 千克(约) 1585 千克 2242 千克(裸机)3311 千克(带动力装置) 总长 2616 毫米 3137 毫米 3200 毫米进气口/风扇直径 1836 毫米 1080 毫米 1600 毫米 压力比 37.4 17.3 29.4 涵道比 6.6 1.00 5.42 TO 时推力 138.8 kN 72.9千牛 111.25 kN巡航推力30.78 kN18.9 kN21.6 kN SFC16.06 mg/Ns23.37 mg/Ns16.29 mg/N-s空气质量流量466 kg/s148 kg/s355 kg/sFADEC(Y/N)是否是其他信息4 GE-90涡扇发动机循环分析以下是借助计算机程序进行的简单大涵道比涡扇发动机循环分析的结果。分析理论可参见[3]。更广泛和准确的分析可参见[4]。GE90发动机的可用数据仅限于其起飞推力、涵道比(BPR)和总压比(OPR)。其余数据是暂定的,是基于其他类似的 GE 发动机(例如 CF6-80C2 和 CFM56)并考虑了适当的改进而得出的。发动机数据进气效率 = 0.980风扇多变效率 = 0.930压缩机多变效率 = 0.910涡轮多变效率 = 0.930等熵喷嘴效率 = 0.950机械效率 = 0.990燃烧压力损失(比率) = 0.050燃料燃烧效率 = 0.990热喷嘴面积 = 1.0111 m2冷喷嘴面积 = 3.5935 m2设计点(巡航)非设计点(起飞)高度(公里)10.668 0.000马赫数0.850 0.000RAMPR 1.590 1.000FPR 1.650 1.580LPCPR 1.140 1.100HPCPR 21.500 23.000OPR 40.440 39.970Pa(巴)0.239 1.014Ta(K)218.820 288.160Ca(米/秒)252.000 0.000BPR 8.100 8.400TIT(K)1380.000 1592.000ma(千克/秒)576.000 1350.000推力(kN)69.200 375.300mf(千克/秒)1.079 2.968SFC(毫克/纳秒)15.600 7.910Sp。推力(Ns/kg) 120.100 278.100 计算出的巡航推力值与装有两台 GE90 发动机的波音 777 飞机所需的推力(每台发动机约 65-70 kN)非常接近。 93759555539.pdf 5 设计点运行图(巡航)推力和 SFC 与 FPR 64 65 66 67 68 69 70 1.40 1.43 1.46 1.49 1.52 1.55 1.58 1.61 1.64 1.67 1.70 1.73 1.76 1.79 FPR 推力 ( kN) 15.50 15.75 16.00 16.25 16.50 16.75 17.00 推力 SFC 推力和 SFC 与 OPR 66 68 70 72 74 76 78 20 22 24 26 28 30 32 34 36 38 40 42 44 46 OPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 推力 SFC 6 推力 & SFC vs BPR 50.0 57.5 65.0 72.5 80.0 87.5 95.0 102.5 110.0 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6 BPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 推力SFC 推力 & SFC vs TIT 40 50 60 70 80 90 100 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 TIT (K) 推力 ( kN) 15 16 17 18 19 20 21 推力 SFC 7 认证 ([1] 和 [2]) 里程碑 日期 事件 1992 年 11 月 首次核心测试 1993 年 3 月 第一台发动机以 377.8 kN 推力进行测试 1993 年 4 月 第一台发动机以 468.5 kN 推力进行测试 1993 年 12 月 第一个 GE90 飞行试验台在波音 747 上飞行 1994 年 11 月 GE90 认证388.8 kN 推力 1994 年 12 月 首次波音 777 飞行测试 1995 年 8 月 波音 777/GE90 飞机认证 1995 年 9 月 波音 777/GE90 投入使用 GE90 地面和飞行测试 - 随着 FAA 对 GE90 的认证,GE 航空发动机公司完成了有史以来最广泛的地面和飞行测试项目之一,这是发动机制造商开展过的项目之一。GE 于 1990 年 1 月宣布开发 GE90。1992 年 11 月,第一台全尺寸发动机核心机开始测试;随后,1993 年 3 月,第一台全尺寸发动机投入使用。unisolve_pharmacy_software_manual.pdf 自那时起,GE 及其收益共享参与者共运行了 13 台开发发动机,验证了发动机固有的设计优势。总体而言,这些发动机的运行时间超过 5,000 小时,包括在 GE 改装的波音 747 飞行试验台上飞行的 228 小时。GE90 耐力发动机完成了超过 14,000 个循环,并展示了出色的分段耐久性。七台发动机的推力超过 100,000 磅(444.5 千牛),其中一台创下了 110,000 磅(489 千牛)的推力纪录。事实上,GE90 开发发动机的推力水平已超过 100,000 磅(444.5 千牛),持续超过 65 小时。作为必需认证测试的一部分,GE90 成功完成了 2.5 磅和 8 磅(1.13 千克和 3.63 千克)的复合叶片鸟吞测试。1994 年 10 月,在炎热天气下,四台 2.5 磅的鸟被吞噬,发动机以产生 85,000 磅(377.8 千牛)推力所需的速度运转。没有推力损失,发动机在吸入后所需的 20 分钟运行时间内响应所有油门指令。所有风扇叶片都处于良好状态,并继续在其他发动机测试中运转。1994 年 11 月中旬,GE 在 FAA 的陪同下进行了风扇叶片引爆测试。释放叶片以 2,485 rpm 的风扇速度引爆,比目标速度高出 10rpm,发动机产生超过 105,000 磅(466.8kN)的海平面静态(SLS)校正推力。发动机支架系统按设计运行,测试证明了风扇叶片的遏制力。复合材料风扇叶片的坚固性得到成功展示,8 观察到的尾部叶片损坏与测试前分析相符,验证了复合材料叶片设计的固有优势。GE90 于 1993 年底首次飞行,安装在 747 飞行试验台上。在第一阶段的测试中,该发动机在 45 次飞行中累计飞行了近 228 小时。发动机表现异常出色,其性能水平超出规格,并在整个飞行包线内为飞行员提供了不受限制的油门运动。34042629589.pdf 为什么要使用全新发动机?市场要求从历史上看,飞机的重量和推力要求不断增加。lowrider 汽车展评判评分表今天,市场青睐重量更重、航程更远、内置推力增长的飞机。增长图 1 增长图 2 上述增长图显示,趋势有利于使用 GE90 驱动的大型宽体飞机。为航空公司的未来做好准备 • 为整个新型大型飞机系列提供通用发动机。• 新型宽体飞机需要比现在的发动机高 20-30% 的推力。• 历史上飞机需要 20-30% 的额外推力来增加 TOGW。现代循环设计具有内在的总体性能优势• 比今天的发动机高 10% 的 SFC。• 高推力增长与通用性。• 低噪音和排放。结合“经验教训”的成熟技术的可靠性。GE90 设计GE90 设计用于:• 推力增长。• 与 777 飞机系列的发动机通用性。• 燃油效率。• 180 分钟 ETOPS(延长双发运行)。9• 低排放。• 低噪音。• 降低运营成本。选择可显著节省燃油的循环。总计其余乘以三级• 涵道比优化。• 总压比优化。• 设计用于最低 SFC 和燃油消耗。 10. 总结 pdf 选择的设计可使航空公司获得最大利益。• 设计和演示高可靠性技术。• 以 CF6 和 CFM56 可靠性为基础。• ETOPS 批准。• 运营商制定的维护程序。• 低噪音、低排放设计。• 最低运营成本设计。发动机尺寸符合未来飞机的要求。• 初始认证推力为 84,700 磅(376.5 kN)- 1995 年 2 月• 首次增长认证推力为 92,000 磅(408.9 kN)- 1996 年 5 月。• 可能增长到 120,000 磅(533.4 kN)。高推力和测试经验总结• > 422.3 kN 下超过 145 小时• > 435.6 kN 下超过 95 小时• > 440.0 kN 下超过 75 小时• > 444.5 kN 下超过 65 小时• > 444.5 kN 下在 900-105/1A 上连续运行 20 小时注:海平面静态(SLS)校正推力水平八台 GE90 发动机已在 445 kN 的 SLS 推力下或以上运行。进行了各种测试• 风扇测绘。• 助推器应力调查。• 超速认证(490.3 kN)。• 三重红线段测试“彩排”。• 1.13 公斤鸟牌认证/叶片伸出认证。 10 发动机及其部件 ([2]) GE-90 涡扇发动机(横截面图)以下是发动机的主要部件 - 1. 复合风扇2. 低压压缩机 (LPC)/增压器3. 高压压缩机 (HPC)4. bugavufawenesa.pdf 双圆顶燃烧室5. 高压涡轮 (HPT)6. 低压涡轮 (LPT) 11 复合风扇 GE90 风扇设计 风扇图 • 22 个复合宽弦叶片和平台。• 大风扇直径可实现更高的空气质量流量。• 风扇齿轮传动 - 降低风扇尖端速度,从而产生更少的噪音。• 低尖端速度和压力比,实现安静高效的运行。• 轻质三网盘,便于检查并减轻重量。• 混合(圆锥形/椭圆形)旋转器,减少核心碎片摄入。• 风扇压力比 (FPR) 约为 1.60-1.65(暂定)。 GE90 风扇叶片 风扇叶片 • 宽弦复合风扇 – 性能高、重量轻。• 耐环境性 – GE90 风扇材料系统表现出与当前飞机复合材料相同的耐环境性。12 • GE90 风扇复合材料系统与目前服役的风扇复合材料系统类似。 • 完全暴露在航空液体中的层压样品通常可保持 95% 的基本性能。 • 实际叶片完全受聚氨酯涂层保护。• 不暴露于紫外线辐射。 复合材料风扇开发历史• GE90 复合材料叶片受益于 25 年的开发。• 材料、制造和计算方面的进步提供了必要的技术。 los baker van a peru book pdf 13 压缩机 压缩机图 第一级 HPC 叶片 •结构类似于成功的 CFM56。•紧凑的发动机结构。•坚固的低纵横比翼型。•减少零件数量。•降低运营成本。•短 LPC/助推器 - 3 个阶段。•LPC 压力比(LPCPR)约为 1.10-1.14(暂定)。•低 LPT 入口温度以增加推力。•10 级 HPC,压力比为 23:1(HPCPR)。•NASA 节能发动机(E3)的扩大规模在测试单元和飞行测试中都展示了性能和可操作性。 燃烧室 •来自成功的先进军事计划的双圆顶环形燃烧室。 • 降低 NOX 排放水平(低至 10 ppm)。• 降低未燃烧的碳氢化合物、一氧化碳和烟雾水平。• 提高可操作性。• 长寿命衬套结构。• 针对功率设置进行调节的圆顶气动热调节。• 高度重新点火能力 30,000 英尺(9.144 公里),留有余地。14 涡轮机涡轮图 HP 涡轮叶片 - 分别为 1 级和 2 级。 • 高压涡轮机采用了成熟的设计技术。• 6 级 LPT 和 2 级 HPT。• 类似于 CFM56 的刚性、简单支撑转子系统,可实现动态稳定性。• 仿照成功的 CF6-80 设计设计的无螺栓组装翼型和罩壳冷却回路。• 从成熟的涡轮机经验中引入薄膜冷却技术。• 多孔涡轮冷却技术 - 冷却效果更佳。• 成功的 CF6-80 设计和被动间隙控制系统特点。• 带有激光钻孔冷却孔图案的第 1 级 HPT 叶片铸件(材料 N5)。• 带有激光钻孔冷却孔图案的第 2 级 HPT 叶片(材料 N5)。• 基于 CFM56 和 CF6-80 设计的模块化喷嘴组件。 15 其他特点 ([2]) GE90 和环境 减少排放和烟雾 • 双圆顶燃烧室。• 降低噪音。• 低风扇压力比和大纵横比低压涡轮。• 总体上降低任务总燃料消耗 = 降低任务总污染物。• 提高推力与核心流量比。 GE90 燃烧室在降低排放水平的同时提高了可操作性 • 双环形燃烧室。• 优化了飞行员圆顶以提高可操作性 - 优化了主圆顶以提高功率。• 减少排放 基于 15 年的 NASA 和先进军用发动机开发经验。• 全面的 GE90 测试。• 出口温度曲线符合设计意图。• 验证了排放水平。 可运输性• 针对标准发动机运输方法设计。GE90推进器• 比今天的高涵道比涡扇发动机更小 GE90模块化设计• 只允许更换推进器• 推进器/喷嘴与风扇定子模块分离• 风扇定子模块留在主基座或飞机上• 拆卸和更换时间估计少于6小时 16 GE90的未来 ([2]) 推力增长GE90组件的尺寸适合增长。如果市场需要,通过进一步投资,GE90可以产生110,000磅(511千牛)的推力。通用电气打算通过以下方式实现推力增量 - • 376.5千牛风扇认证发动机。B777“B”市场。 • 409 kN 风扇改进的 LPT 材料。增强的 HPT 冷却和第一级叶片 TBC。B777“B”市场。B777 拉伸。 • 422.3 - 435.6 kN 风扇改进的涡轮机械。 • 466.8 kN 风扇带有降级核心的更高 P/P 风扇。 • 511.2 + kN TF带有降级核心的更高速度和 P/P 风扇。 17 结论可以看出,GE90 确实是 90 年代最强大、最高效的商用运输发动机。 85086163020.pdf 它还具有足够的推力增长空间,以满足未来的需求。虽然缺乏有关该发动机的确切技术信息(例如其重量、压力比、TIT、巡航推力、sfc 等),导致本报告中的数据具有不确定性,但与其他发动机的比较清楚地表明,它在推力和燃油效率方面是独一无二的。18 参考文献 1.