引言量子协议领域的研究已经得到了广泛的开展。在量子密码学领域,Ekert [1]使用两个EPR量子比特(Einstein、Podolsky、Rosen)的状态作为状态紧密性测试器,并在Bennet通信协议[2]中通过单粒子和双粒子算子共享这个EPR。1993年,Bennet等人[3]首次提出了通过EPR通道进行一个量子比特状态的量子隐形传态的理论协议。量子隐形传态是通过划分量子纠缠态和涉及一些非局部测量的经典态,在发送者(Alice)和接收者(Bob)之间的不同地方发送任意数量的无法识别的量子比特的过程。一般来说,Alice中的非局部测量采用射影测量,而Bob中的非局部测量则是幺正操作。还有一些协议,其非局部测量是通过 Aharanov 和 Albert [4] 的方法实现的,Kim 等人 [5] 的实验和 Cardoso 等人 [6] 的工作中实现了非线性相互作用,这些相互作用利用了状态源腔和通道源之间的共振。对于任意两个比特的纠缠态,量子通道的选择是通过 Schmidt 分解测试 [23] 获得的,而在多立方体中,则是通过其约化密度矩阵的秩值的组合 [24] 获得的。
该指南旨在作为各种收购问题的入门,并且可能不会对每个主题进行冗长的讨论。鼓励用户咨询指南的每个部分中所述的其他材料,以获取补充信息。注意:收购指南中使用的“高级采购主管”是指收购管理办公室主任。doe,非国家核安全管理局(NNSA)活动,以及国家核安全管理局的NNSA活动管理员。在大多数情况下,NNSA的管理人员与执行人员相关的当局已委派给NNSA的收购管理局长。《收购指南》将由政策办公室发布和维护,并将修改以添加材料或根据需要修改现有材料。DOE收购指南将按季度更新 - 有关其他主题的索引,并应将其定向到该指南的修订,应直接送至doe_oapmpolicy@hq.doe.gov。
小胶质细胞在淀粉样β(Aβ)斑块附近被激活,但是小胶质细胞是否有助于β向未受影响的大脑区域的β传播仍然未知。使用野生型(WT)神经元的转移,我们表明β进入WT移植物,并且伴随着小胶质细胞浸润。小胶质细胞功能的操纵减少了移植物中的β沉积。此外,体内成像将小胶质细胞鉴定为先前未受影响的组织中β病理的载体。因此,我们的数据主张迄今未探索β传播的机制。β的聚集是阿尔茨海默氏病(AD)发病机理中必不可少的早期触发因素,导致神经原纤维缠结,神经元功能障碍和痴呆1。由于它们与β斑块2-4的密切关联,已经提出了几种细胞类型的因果关系,包括小胶质细胞,包括小胶质细胞。在大脑中形成β斑块后,小胶质细胞与它们建立了亲密的接触并成为反应性5,6。那些活化的小胶质细胞已通过β摄取与牙菌斑的生长有关,然后是小胶质细胞死亡7、8。我们的小组和其他人最近在β播种9 - 11中牵涉到小胶质细胞,但它们在传播β病理学中的作用仍然难以捉摸。在支持“致病性扩散”假设12中,先前的移植实验表明,源自跨基因宿主组织的β能够入侵并沉积在非转基因移植物中,从而导致神经变性13 - 15。1a,b和扩展数据图1a,b)13。1A和扩展数据图然而,β扩散到WT移植物中的机制尚不清楚,并且迄今尚未证明细胞介导的机制。在这项研究中,我们将wt小鼠的胚胎神经元细胞移植到了年轻的,前置前的5xfad trans-transic小鼠的新皮细胞中,确认了移植到宿主组织中以及几个月内的移植物的存活(图。在移植后4周后立即存在β斑块,它们随着时间的推移而增加(图。1a – c,黄色箭头)。我们首先假设App/Aβ被前进运输
自 1984 年 Bennett 和 Brassard[1]提出量子密钥分发 (QKD) 协议以来,量子密码学引起了广泛的关注。它的安全性由海森堡不确定性原理、量子不可克隆定理等量子力学原理保证。量子密码学可以提供无条件安全的优势,使得量子密码学的研究越来越重要。目前,量子密码学的许多重要分支已被发展起来,如量子密钥分发[2,3]、量子签名 (QS)[4–6]、量子隐形传态 (QT) [7]、量子认证 [8]、确定性安全量子通信 [9]。量子签名可用于验证发送者的身份和信息的完整性。仲裁量子签名 (AQS) 因具有许多优点而备受关注。2002 年,曾文胜等 [9] 在量子密码学中提出了一种基于仲裁的量子签名方案。 [ 10 ] 利用格林-霍恩-泽林格 (GHZ) 态和量子一次性密码本 (QOTP) 提出了第一个仲裁量子签名方案。该方案在经典仲裁数字签名的设计基础上,利用可信第三方仲裁员提供的在线签名为签名者和接收者提供重新验证服务。2008 年,Curty 和 Lutkenhaus [ 11 ] 研究了该方案 [ 10 ],他们认为该方案描述不清楚,安全性分析不正确。针对 Curty 等人的争议,曾等人 [ 12 ] 更详细地证明了该方案 [ 10 ]。2009 年,为了降低协议的复杂度和提高效率 [ 10 ],李等人 [ 12 ] 提出了一种仲裁量子签名方案 [ 10 ]。 [ 13 ] 提出了一种基于Bell态而非GHZ态的AQS方案,并证明了其在传输效率和低复杂度方面的优势。遗憾的是,2010年,Zou和Qiu [ 14 ] 认为李的AQS方案可以被接收方否认,并提出了利用公告板等不使用纠缠态的安全方案的AQS协议。他们的方案进一步简化了李等人的协议,并利用单粒子设计了可以抵抗接收方否认的改进AQS方案,从而降低了AQS的物理实现难度。然而,2011年,Gao等人[ 15 ] 首次从伪造和否认方面对先前的AQS方案进行了全面的密码分析。
我们利用局部性的见解来约束一类广泛的隐形传态协议。在我们考虑的“标准”隐形传态协议中,所有结果相关的幺正态都是以测量结果的线性函数为条件的泡利算子。我们发现所有这类协议都涉及准备一个“资源状态”,该状态表现出对称保护拓扑 (SPT) 序,具有阿贝尔保护对称 G k = ( Z 2 × Z 2 ) k 。通过测量本体中相应的 2 k 个弦序参数并应用结果相关的泡利算子,将 k 个逻辑状态在链的边缘之间隐形传态。因此,这一类非平凡的 SPT 状态对于 k 个量子比特的标准隐形传态既是必要的,也是充分的。我们用几个例子说明了这个结果,包括簇状态、其变体和非稳定器超图状态。
Bolney教区议会对Lightrock Power Bess DM/23/1184的回应草案:在Coombe Farm的土地上,Twineham Bolney Parish Council鲍勃·莱恩(Bob Lane),强烈反对以下理由反对该计划申请:景观和视觉影响申请人在申请人中选择的地点是在景观中占据东部/西部地区的山脊。该提案是针对52个白电池容器的高度为270万,高度为290万,高度为3m的声木栅栏和一个高度为6m的变电站。所有这些电气设备都将主导山脊线,并将对景观产生有害影响,而景观不会因拟议的景观而在现场周围的景观降低。申请人未能正确评估开发对住宅物业的影响和靠近现场的公共权利。图1.4在申请人的LVIA中显示,该网站一公里内用户的所有物业和公共权利将在该开发中具有61%至100%的理论可见性。第8.1.5段的申请人景观和视觉影响评估承认,公共权利的使用权34BO的使用者将在Bolney教区中失去整个现场的现有视图,从而对南方唐斯(South Downs)失去。申请人的设计和访问声明的第6.2段承认,该开发项目“会导致一些不利的景观和视觉影响对许多受体产生”。政策DP40 MSDC地区计划的可再生能源计划要求任何可再生能源计划必须特别考虑开发的景观和视觉影响,对生态的影响以及对住宅便利性的影响,包括视觉入侵。此应用程序失败了策略DP40。站点选择该应用网站在开放式乡村,因此开发与DP12保护和增强当前MSDC地区计划的乡村相反。如果该项目位于布朗菲尔德而不是农业土地上,这将更合适。申请人完全未能证明该项目不能合理地安置在当地景观中较不突出的山脊上,远离公共权利,列出的建筑物和住宅特性与政策DP12的保护和乡村的保护和增强,DP22公共权利,dp29噪声和dp3噪声和dp3噪声和dp3噪声构建。正如Rampion最近通过在毗邻的Cowfold教区中选择了其新变电站的地点,因此这些电气安装不必位于国家网格变电站附近,但可以位于几公里之外。教区
拥有液态水地下海洋的冰卫星是太阳系中最有前途的天体生物学目标之一。在这项工作中,我们评估了在前体生命探测任务中部署激光帆技术的可行性。我们研究了前往土卫二和木卫二的此类激光帆任务,因为这两颗卫星发射出的羽流似乎可以进行现场采样。我们的研究表明,千兆瓦激光技术可以将 100 公斤的探测器加速到 ∼30 公里/秒的速度,然后在 1 - 4 年的时间内到达木卫二,在 3 - 6 年的飞行时间内到达土卫二。虽然激光阵列的理想纬度各不相同,但将必要的基础设施放置在靠近南极圈或北极圈的地方可能是土卫二任务在技术上可行的选择。至关重要的是,我们确定与这些卫星的最小相遇速度(约 6 km s −1 )可能接近最佳速度,可通过类似于欧罗巴快船任务上的表面灰尘分析仪的质谱仪来检测羽流中的生物分子构件(例如氨基酸)。总之,太阳系中的冰卫星可能非常适合通过激光帆结构方法进行探索,尤其是在需要低相遇速度和/或多次任务的情况下。
物理材料科学的优先领域之一是开发基于耐热聚合物的新型聚合物复合材料。聚酰亚胺在耐热聚合物领域占据领先地位。目前,使用各种基于聚酰亚胺的材料。聚酰亚胺泡沫 ( PIF ) 广泛用于微电子领域,以生产介电常数非常低的电介质、传感器保护涂层、用于补偿振动载荷的应力缓冲器以及许多集成电路元件;由于其高热稳定性和耐热性以及防火性,它们还在航空航天中用作隔热、吸音和减震材料 [ 1 ] 。存在几种获取 PIF 的基本技术。最常见的过程是基于四羧酸酯与二胺的化学反应,其结果是形成相关的预聚物 [ 2 ] 。上述 PIF 生产方法的替代方法可能是在热处理聚酰胺酸 (PAA) 的水溶性铵盐的冻干物的过程中形成多孔聚酰亚胺结构的技术 [ 3 ] 。其独特之处在于无需使用表面活性剂或其他添加剂即可获得所需形状的各向同性泡沫材料,因为多孔结构是由于溶液冻结并随后水升华而形成的。然而,在这种情况下,泡沫材料性能的调节仅限于选择 PAA 盐溶液的浓度及其冻结条件。此外,控制性能的可能方法之一是引入各种填料 [ 4 ] 。在改善聚酰亚胺的热性能和机械性能方面特别令人感兴趣的是层状铝硅酸盐纳米颗粒 [ 5 ] 。在广泛使用的铝硅酸盐纳米颗粒中,有蒙脱石,其特点是可用性和高度各向异性。因此,本研究的目的是
摘要:这项研究的目的是评估利用BW(Buttress Wall)来控制越南胶质土壤条件下膜片壁的偏转的影响。使用在特定项目期间密切监视的数据评估了碰撞层的物理和机械性能,这是利用硬化土壤模型的3D数值模拟的验证。分析结果与现场监视数据非常匹配,该数据测试了模拟模型的准确性。这构成了进一步研究BW壁的维度参数的基础,包括它们之间的长度,厚度和间距。从参数研究中获得的结果表明,在BW壁之间改变壁的长度和间距显着限制了隔膜壁的变化,而厚度的变化具有可忽略的效果。通过3D数值模拟,已经建立了最大壁偏转与参数(例如壁长和BW壁之间的间距)之间的线性关系。
汉堡应用科学大学欧洲可持续发展科学与研究学院,乌尔曼利埃20,汉堡D-21033,德国B自然科学系,曼彻斯特大都会大学,切斯特街,曼彻斯特街,曼彻斯特街,M1 5GD。国际关系研究生课程。校园大学'Ario Darcy Ribeiro。EDIO OF THE INTERNATIONAL INSTITUTE-NORTH WINGS, BRASILIA, DF 70910-900, BRAZIL D FERNANDO PERSON RESEARCH, INNOVATION AND DEVELOPMENT INSTITUTE (FP-I3ID), UNIVERSITY FERNANDO PERSON Coimbra, Patronato Building, Rua da Matem, 49, Coimbra 3004-517, Portugal F National Institute for Research of Amaz ², biodiversity coordination, av.Andr´和Araújo2936,PetrIlópolis,Manaus,AM 69067-375,巴西G国家空间研究所(INPE),AV。宇航员,1,758-格兰贾花园,乔希和坎波斯1,保罗2227-010,巴西