本研究旨在利用 ABAQUS 有限元软件确定各种影响参数(例如隧道直径 (D)、深度 (H)、宽度 (B)、长度 (L)、楼层数、建筑物与隧道轴线的水平距离 (X))以及土壤特性(例如内摩擦角 (ϕ)、泊松比 (υ)、弹性模量 (E) 和黏聚力 (C))对地表沉降的影响。结果显示,在一定深度下,沉降随隧道直径的增加而增加,而随隧道深度的增加而减小。建筑物宽度和长度的变化也会直接影响沉降;因此,随着建筑物的横截面积及其刚度和硬度的增加,建筑物的宽度和长度增加,地基沉降变得更加均匀且更耐位移,从而导致地表沉降减少。此外,随着建筑物与隧道轴线的距离增加,沉降减少并在等于隧道直径的距离后呈现恒定趋势。根据敏感性分析的结果,隧道深度对地表沉降的影响最大,可以通过控制隧道距离地面的深度来防止地表沉降。此外,在土壤地质力学参数中,弹性模量在本研究中对沉降的影响最大。最后,根据结果,隧道、建筑物和土壤特性对地表沉降的影响非常重要,尤其是在城市环境中。
如果电线杆的使用时间超过其预期寿命,即使没有明显的损坏迹象,它们也很有可能不再安全。此外,木杆的预期寿命会因其用途、种类、气候条件和地点的土壤特性而有很大差异。如果对任何电线杆的强度有任何疑问,应将其更换,或向土木/结构工程师或资产管理公司寻求专家评估。
8间隙分析64 8.1简介64 8.2 CO 2中的不确定性ERW 64 8.3根据农业土地使用对土壤特性和功能的影响65 8.4对接收环境的影响74 8.5 ERW的社会和文化许可,法律和技术经济因素和技术经济因素78 8.6降低不属于不适用的效果。83
全球人口增长已导致许多自然生态系统的土地利用 (LU) 发生变化,从而导致影响土壤质量的环境条件恶化。在缺水且土壤有机资源不足的系统中,土地利用对土壤质量的影响尤为显著。因此,本研究的主要目标是使用成像光谱 (IS) 评估人类活动(即土地利用,如放牧、现代农业和径流收集系统)对以色列干旱地区土壤质量的影响。为此,选择了 12 种物理、生物和化学土壤特性,并将其进一步整合到土壤质量指数 (SQI) 中,以此作为评估以色列南部干旱地区土地利用变化的显著影响的方法。AisaFENIX 高光谱机载传感器的飞行活动用于开发区域范围内 SQI 的 IS 预测模型。使用偏最小二乘判别分析 (PLS-DA) 分类方法 (OA = 95.31%,Kc = 0.90),从高光谱图像本身提取的光谱特征在四个 LU 之间可以很好地分离。使用多元支持向量机回归 (SVM-R) 模型对光谱数据和测量的土壤指标以及总体 SQI 进行相关性分析。SVM-R 模型与几种土壤特性显著相关,包括总体 SQI (R 2 adj Val = 0.87),成功预测了 r
全球人口增长已导致许多自然生态系统的土地利用 (LU) 发生变化,从而导致影响土壤质量的环境条件恶化。在缺水且土壤有机资源不足的系统中,土地利用对土壤质量的影响尤为显著。因此,本研究的主要目标是使用成像光谱 (IS) 评估人类活动(即土地利用,如放牧、现代农业和径流收集系统)对以色列干旱地区土壤质量的影响。为此,选择了 12 种物理、生物和化学土壤特性,并将其进一步整合到土壤质量指数 (SQI) 中,以此作为评估以色列南部干旱地区土地利用变化的显著影响的方法。AisaFENIX 高光谱机载传感器的飞行活动用于开发区域范围内 SQI 的 IS 预测模型。使用偏最小二乘判别分析 (PLS-DA) 分类方法 (OA = 95.31%,Kc = 0.90),从高光谱图像本身提取的光谱特征在四个 LU 之间可以很好地分离。使用多元支持向量机回归 (SVM-R) 模型对光谱数据和测量的土壤指标以及总体 SQI 进行相关性分析。SVM-R 模型与几种土壤特性显著相关,包括总体 SQI (R 2 adj Val = 0.87),成功预测了 r
Fleishman Root Agrocology Lab在宾夕法尼亚州立大学研究项目描述:Fleishman Root Agrocology Lab正在寻找一名博士生来研究根系和深层土壤健康。农业土壤通常由于过度使用和不利的环境条件而遭受退化,这限制了其支持植物生产力的能力。因此,越来越多地促进了有利于土壤健康的实践,包括全年保持土壤中的生命根源。但是,我们对哪些根特性最有可能改善土壤特性,例如养分可利用性,碳固存和水浸润。该研究项目将检查四种多年生草料作物(三种草和苜蓿)的根系以及最多1米深的土壤特性。实验将在温室和现场进行。训练的潜在领域包括根生物生理学,土壤和根际微生物组分析以及土壤生物地球化学和水循环。根源农业生态实验室重视包容性的环境和来自各种个人,工作和教育背景的申请人。地点和研究生课程:宾夕法尼亚州立大学植物科学系Suzanne Fleishman博士将为博士生提供建议。州立大学,宾夕法尼亚州是一个中型城镇,拥有丰富的餐馆,经常的艺术活动,并迅速进入公园和远足径。研究项目的现场站点距离大学约25分钟路程。
说环境数据很复杂,其实并不为过——它包括来自近 5,000 颗环绕地球的卫星、快速增长的无人机操作、200 亿个实时捕获数据的分散传感器,以及热情公民创建的数百万条记录,记录的内容包括鸟类目击事件、当地社区的空气质量等。更不用说地下测井、土壤特性、水下探测器、点源空气排放、交通排放、野生动物生物监测、化学特征等等。虽然我们在捕获数据方面正在迅速进步,但我们在将其投入使用方面仍然举步维艰。这是可以理解的:使用环境数据会带来许多特殊的挑战。
我们介绍了一个数学优化框架,旨在评估未来气候场景下城市绿色基础设施干旱的缓解策略。我们的方法将当地的土壤和植被特征与KNMI场景的气候数据相结合。通过分析,我们研究了土壤特性,植被类型和不断发展的气候条件之间的复杂关系。通过考虑基本的物理过程,例如土壤水分平衡和蒸散量,该模型确定了局部雨水捕获,存储和灌溉系统的最小尺寸,以防止植物压力。通过位于阿姆斯特丹东部Venserpolder的Bajeskwartier进行的真实案例研究证明了我们方法的适用性。
咸水滴灌是解决干旱地区淡水短缺问题的一个潜在解决方案。然而,长期使用会使土壤盐分积累并降低磷 (P) 的有效性。生物炭和秸秆改良剂已被证明可以减轻这些影响,但它们在调节长期咸水灌溉下参与磷转化的微生物基因方面的机制仍不清楚。本研究旨在评估生物炭和秸秆掺入对盐灌棉田土壤微生物群落结构和磷有效性的影响。基于 14 年的田间试验,开发了三种处理方法:仅咸水灌溉 (CK)、咸水灌溉加生物炭 (BC) 和咸水灌溉加秸秆 (ST)。结果表明,这两种改良剂都显著提高了土壤含水量、有机碳、总磷、有效磷和无机磷组分 (Ca 10 -P、Al-P、Fe-P 和 OP),同时降低了土壤电导率和 Ca 2 -P 和 Ca 8 -P 组分。生物炭增加了 Chloro flexi、Gemmatimonadetes 和 Verrucomicrobia 的相对丰度,而秸秆则促进了 Proteobacteria 和 Planctomycetota 的丰度。两种处理均降低了几种 P 矿化基因(例如 phoD、phoA)的丰度并增加了与 P 溶解相关的基因(例如 gcd)。相关性研究表明,微生物种群和 P 循环基因与土壤特性紧密相关,其中 Ca 2 -P 和 Al-P 是重要的介质。通常,在长期含盐灌溉下,生物炭和秸秆改良剂可降低土壤盐分,提高土壤 P 的有效性,降低磷循环相关微生物基因的表达并改善土壤特性。这些结果使它们成为可持续土壤管理的绝佳技术。
生物炭对土壤质量的主要好处是通过增加可以保留养分并增加水位容量的活性表面积。我们需要更好地了解这些变量,然后才能广泛推荐对土壤的生物炭应用。例如,新鲜生产的生物牙齿是疏水性的,表面电荷较低,但是随着土地施加后的时间,生物炭的表面可以被氧化,从而更具反应性。因此,多年来可能无法实现将生物炭应用于土壤的全部好处。正在进行许多关于生物炭生产技术的研究以及生物产生的生物如何影响土壤特性和促成性。希望,我们将在不久的将来就生物炭申请提出建议。