现代人为影响和气候变化导致的牧场退化问题要求寻找新的、对环境安全的解决方案。利用生物刺激素创造一年生牧草的技术是一种很有前途的恢复和提高牧场生态系统生产力的方法。在哈萨克斯坦南部进行的研究表明,生物刺激素,尤其是发酵牛粪的生物刺激素具有很高的效率。与传统的矿物肥料(N 20 P 20 K 20)相比,生物刺激素 MERS 和 Bio-Bars 不仅有助于提高绿地产量,而且还通过刺激有益微生物群落的生长来改善土壤特性。这使得创建能够抵抗负面环境影响的自我再生牧场系统成为可能。这项研究的新颖之处在于将生物刺激素的使用与有机废物发酵相结合的综合方法。这种方法不仅提高了资源利用效率,而且还促进了封闭的生产循环,最大限度地减少了对环境的负面影响。
该培训计划的开头是Sc-'G'的S Pattanaik博士和Hyderabad森林生物多样性的GCR博士的欢迎地址。他热烈欢迎所有参与者。在他的讲话中,他简要介绍了该研究所的授权,愿景和各种正在进行的研究活动。他还强调说,该研究所是“ Prakriti”计划的一部分,这是一项科学家的联系计划,旨在在学童中对保护自然的认识。Pattanaik博士进一步强调了培训计划的重要性,并指出土壤是植物生长的关键因素。因此,必须通过确定植物生长必需营养的状态来评估土壤特性和质量。他解释说,土壤采样技术涉及使用标准方法为整个区域(1公顷面积)收集代表性的土壤样品。最后,帕塔奈克博士重申了培训计划在评估土壤中宏观和微养分状态的重要性,这对于植物生产力至关重要。
摘要:联合国 2030 年可持续发展议程强调了采用可持续农业实践的重要性,以减轻气候变化对全球粮食系统造成的威胁,提供明智的水资源管理并恢复退化的土地。同时,它提出了使用近地表地球物理测量来协助精准农业带来的好处和优势,特别是提供有关垂直和水平尺度土壤变异的信息。在这些调查方法中,探地雷达已证明其在土壤表征方面的有效性,因为它对土壤电性质的变化很敏感,并且具有调查地下分层的额外能力。本文旨在全面回顾 GPR 技术在精准灌溉领域的当前应用,特别是其提供有关土壤质地、结构和水文特性在田间空间变异性的详细信息的能力,这些信息对于优化灌溉管理必不可少,采用可变速率方法保护水资源,同时保持或提高作物产量和质量。对于每种土壤特性,本文分析了常用的操作和数据处理方法,强调了其优点和局限性。
摘要 —本文全面分析了各种土壤特性如何影响探地雷达 (GPR) 接收信号的特征。这些特性包括介电特性、厚度、层数、雷达配置和表面粗糙度。本文使用 gprMax 进行了详尽的分析,模拟了不同的土壤介质场景,以展示这些参数如何影响 GPR 接收信号。所提出的方法通过描述性统计分析从接收信号中提取关键特征以表征土壤。然后,本文部署了机器学习 (ML) 技术,特别是随机森林 (RF) 模型和基尼均值减少杂质 (MDI) 作为度量,以识别数据集中最有影响力的特征。此过程从时域中提取一组简洁的特征,然后使用频域特征进行扩展。所提出的方法不仅可以有效地捕获高维 GPR 数据中的关键信息,还可以降低其维数,确保保留基本信息。使用这些重要特征而不是复杂的原始 A 扫描数据来训练 ML 和深度学习 (DL) 模型,可以实现更准确的土壤湿度和地下分析。
通过可能包含抗生素(例如肥料)的有机修正案对农业土壤的施肥,可以将细菌病原体和抗生素耐药菌转移到土壤社区。然而,修订后的土壤中肥料传播细菌的侵袭仍然知之甚少。我们假设,这种过程既受土壤特性(及其微生物群落的特性)的影响,又受到兽医护理中使用的抗生素等污染物的存在。为了测试这一点,我们进行了一个缩影实验,在农艺剂量下对四个不同的土壤进行了修改或不进行肥料,并暴露于抗生素磺胺甲胺(SMZ)。孵育1个月后,通过16S rDNA测序评估了土壤细菌群落的多样性,结构和组成。肥料传播细菌的入侵仍然可感知土壤修正后1个月。在实验前6个月,已经用肥料原位修改的土壤获得的结果表明,长期在社区中建立了一些细菌入侵者。即使在土壤之间观察到差异,侵袭也主要归因于一些最丰富的肥料(主要是坚硬)。smz暴露对土壤微生物的影响有限,但我们的结果表明,这种污染物可以增强某些肥料 - 传播入侵者的侵袭能力。
摘要:定性和定量评估评估液体储罐的结构脆弱性。液体储罐通常是在坚硬土壤的区域建造和操作的,以最大程度地减少构成影响。但是,其中许多关键结构都在具有软土的沿海地区。这项研究进行的研究需要在各种条件下准确地对有限元的方法进行精确模拟半植物混凝土储罐的地震行为,包括改变水位和土壤特性。该研究通过动态分析矩形半埋水罐进行了流体结构和土壤 - 结构相互作用,并比较其不同的参数。它还确定了储罐中液体泄漏概率的敏感区域。将建模与日本振动能力诊断表中的定性评估进行了比较。结果表明,与膨胀关节相邻的壁中的拉伸应力大于在所有情况下壁中的相应应力。在土壤类型的动态分析中,表面的压力随水高的增加而增加。对定量和定性评估结果的比较表明,储罐可能在膨胀关节中的软土中泄漏。
增加极端气候事件威胁着陆地生态系统的功能1,2。由于土壤微生物控制着关键的生物地球化学过程,因此了解它们对气候极端的反应对于预测对生态系统功能的后果至关重要。3,4。在这里,我们在欧洲的30个草原上进行了土壤,在共同的受控条件(干旱,洪水,冷冻和热量)下进行了四起对比的极端气候事件,并比较了土壤微生物群落的反应及其与不受干扰的土壤的反应。土壤微生物组在强加的极端事件下表现出一个小但高度一致和系统发育保守的反应。热处理最强烈影响的土壤微生物组,增强了休眠和孢子形成基因,并降低了代谢多功能性。微生物组对热量的反应特别是可以通过局部气候条件和土壤特性来预测,而土壤通常不会体验到最脆弱的极端条件。我们的结果表明,来自不同气候的土壤微生物组具有对极端气候事件的统一反应,但是预测社区变化程度可能需要了解局部微生物组。这些发现提高了我们对土壤微生物对极端事件的反应的理解,并为对极端气候事件对土壤功能的影响做出一般预测提供了第一步。
摘要。NUR MSM,Benggu Yi,Tae Asja,Ishaq LF,Soetedjo INP。2023。从印度尼西亚东努萨·坦加拉(East Nusa Tenggara)的帝摩尔·坦加·塞拉塔坦(Timor Tengah Selatan)的钙质土壤中的磷酸盐溶解细菌的隔离和表征。Intl J Trop Drylands 7:66-72。 磷酸盐溶解细菌(PSB)是一种潜在的生物肥料,因为它具有增加磷(P)供应的能力。 这很重要,尤其是在P供应成为植物生长限制的地区,例如印度尼西亚东努萨·坦加拉(East Nusa Tenggara)的帝汶岛的钙质土壤。 这项研究是在三个生态系统中进行的,其中包括Timor Tengah Selatan的Mamar,Farm和沿海地区,其目标是从这些生态系统中获得和表征PSB。 从每个生态系统中收集了五个植物的根际的五个土壤样品,以实现PSB的发生和土壤物理化学特性。 结果表明,在观察到的这三个生态系统中可以找到PSB,与Mamar和Farm生态系统相比,沿海地区生态系统的分离株最高。 PSB在三个生态系统中相对较低,可能与土壤特性有关。 尽管获得了PSB的人数少,但在这项研究中发现了19种pSB的分离株。 研究结果提供了有关PSB在钙质土壤番茄中出现的初始信息。 这项研究需要扩展到筛查,并确定用作该地区钙质土壤的生物肥料的PSB分离株。Intl J Trop Drylands 7:66-72。磷酸盐溶解细菌(PSB)是一种潜在的生物肥料,因为它具有增加磷(P)供应的能力。这很重要,尤其是在P供应成为植物生长限制的地区,例如印度尼西亚东努萨·坦加拉(East Nusa Tenggara)的帝汶岛的钙质土壤。这项研究是在三个生态系统中进行的,其中包括Timor Tengah Selatan的Mamar,Farm和沿海地区,其目标是从这些生态系统中获得和表征PSB。从每个生态系统中收集了五个植物的根际的五个土壤样品,以实现PSB的发生和土壤物理化学特性。结果表明,在观察到的这三个生态系统中可以找到PSB,与Mamar和Farm生态系统相比,沿海地区生态系统的分离株最高。PSB在三个生态系统中相对较低,可能与土壤特性有关。尽管获得了PSB的人数少,但在这项研究中发现了19种pSB的分离株。研究结果提供了有关PSB在钙质土壤番茄中出现的初始信息。这项研究需要扩展到筛查,并确定用作该地区钙质土壤的生物肥料的PSB分离株。
对空气伽马射线图像作为土壤特性指标的实证研究 - 新南威尔士州沃加沃加。Phil Bierwirth 1 、Paul Gessler 2 和 Dermot McKane 3 1 澳大利亚地质调查组织,邮政信箱 378,堪培拉,ACT 2601 2 CSIRO 土壤部,邮政信箱 639,堪培拉,ACT 2601 3 新南威尔士州土地和水资源保护部,邮政信箱 639,堪培拉,ACT 2601 电子邮件:pbierwir@agso.gov.au,电话:(06)2499231,传真:(06) 2499970 摘要 通过对土壤样本中放射性元素丰度和土壤特性的实证分析,可以评估机载伽马射线图像的信息内容。在地质学、地貌学和土壤发生学的背景下进行解释。结果表明,伽马图像能够绘制土壤特性,如 pH 值、成分/营养物质和质地,但伽马响应通常是矿物、地貌和成土过程的混合。在相对地貌不活跃的地区,钾映射浸出和酸度,而钍定义粘土类型和含量。一般而言,包括不同元素迁移在内的多种影响的混合会阻碍简单的解释。解释模型应包括根据地貌和地质将数据细分为不同领域。简介 本文报告了一项试点研究的重要发现,该研究考察了机载伽马辐射数据作为土壤和土地退化快速测绘工具的效用(Bierwirth,1996 年)。航空伽马光谱法通过测量 K、Th 和 U 放射性衰变产生的伽马射线丰度,提供岩石/土壤层顶部 30-45 厘米的地球化学空间图像,植被的影响很小。在特定的景观中,K、U 和 Th 的空间分布以及 U 和 Th 的衰变产物将取决于物理和化学风化过程 - 与主要矿物有关,这些矿物的风化模式受该地区的地貌状况和气候影响。风、地表冲刷和冲积过程对矿物的物理运输占放射性元素分布的大部分(Martz 和 de Jong,1990 年)。矿物成分发生化学分解后,大多数元素都具有可移动性(可溶解或附着于胶体),具体取决于化学条件,而化学条件又可能与矿物学、地貌年龄和气候因素有关。例如,水解作用会释放出钾长石和云母中的 K +,用于伊利石的形成,吸附到其他粘土上或通过流体迁移去除(Wedepohl,1969 年)。酸性溶液将在风化早期阶段取代 H +,从而有助于 K + 的释放,这最初也可能会增加 pH 值 (Wollast,1967)。因此,空气中检测到的 K 分布的空间模式将取决于土壤的矿物学和年龄(即风化状态)。由于空气中的 U 和 Th 数据分别来自衰变产物 214 Bi 和 208 Tl 产生的伽马辐射,因此了解这些元素的所有母体具有相当长的半衰期的流动性方面非常重要。在铀衰变链中,同位素
抽象的高粱双色是一种重要的全球作物,适合于玉米或米饭更炎热,更干燥的条件下壮成长,具有与独特且分层的土壤微生物组相互作用的深根,在植物健康,生长和碳存储中起着至关重要的作用。对农业土壤的微生物组研究,尤其是生长二色的田地,主要限于表面土壤(<30 cm)。在这里,我们研究了土壤特性,田间位置,深度和高粱类型的生物因子的非生物因素,跨土壤微生物组上的38种基因型。利用16S rRNA基因扩增子测序,我们的分析揭示了微生物组成的显着变化,并且无论基因型或田间如何,双色链球菌内的土壤深度增加。值得注意的是,特定的微生物家族,例如热蛋白孢子科和ABS-6阶内未分类的家族,富含30厘米以上的更深的土壤层。此外,微生物的丰富度和多样性的深度下降,在60-90 cm层达到最低限度,而层的多样性则超过90 cm。这些发现突出了土壤深度在农业土壤微生物组研究中的重要性。