摘要 - 不同的微生物群存在于雨林和红树林植被土壤类型中,但对其人口和多样性的了解不多,因此,进行了这项研究,以评估和比较微生物的季节性变化,以及在尼日利亚州河流州哈科尔特港的两种植被土壤中的植被类型的多样性。在干燥和雨季中收集了顶部土壤(0-15cm)和地下土壤(15-30厘米)的样品,并进行标准分析。cow豆在栽培之前和之后的不同土壤和微生物种群中也进行了种植。结果表明,在干旱季节,红树林和雨林植被类型的微生物种群比其他季节都显着(P≤0.05)。微生物种群的范围是:总杂质细菌7.8-25.0 x105cfu/g和6.6-22.1 x105cfu/g;总核真菌2.0-5.4 x103cfu/g和0.3-0.9 x 103 cfu/g;放线菌0.2-3.7x103cfu/g和0.2-0.9x103cfu/g;硝化细菌0.2-6.9 x102 cfu/g和0.2-5.0x102cfu/g;氮固定细菌(0.2-1.3x102cfu/g和0.2-1.5x102cfu/g)分别用于雨林和红树林土壤。在所有季节中,总共分离出33种细菌,2种放线菌和15种真菌。芽孢杆菌是最主要的细菌,而曲霉菌是两种植被类型和所有季节中最为主要的真菌。牛豆种植和季节性变化后,不同土壤中的微生物种群增加了微生物多样性和种群。索引术语 - 植被,土壤,特征,细菌,真菌
表 1-1 全县按土地用途划分的面积/英亩分布 .............................................................................. 1-11 表 1-2 OFM 对太平洋县人口增长的预测(2017 年基线) ...................................................................... 1-12 表 1-3 各市综合规划中提出的规划行动 ...................................................................... 1-16 表 2-1 佐治亚州非建制地区 SEAVIEW 的土地使用情况 ............................................................................. 2-20 表 2-2 佐治亚州 SEAVIEW 内允许的住宅密度 ............................................................................. 2-20 表 2-3 全县按土地用途划分的面积/英亩分布 ............................................................................. 2-31 表 2-4 农村开发较为密集的有限区域(LAMIRDS) ...................................................................................................................... 2-38 表 2-5 有限区域内较为密集的农村开发土地使用情况 ...................................................................................................... 2-39 表 2-6 历史人口趋势 ...................................................................................................................................... 2-40 表 2-7 预计 2020-2040 年增长情况 ............................................................................................................. 2-41 表 2-8 历史人口趋势:未合并的人口普查定义地区 (CDPS) ............................................................................................................................. 2-41 表 2-9 预计 2020-2040 年增长情况 ............................................................................................................. 2-42 表 2-10 预计 2020-2040 年适应增长所需的土地数量 ............................................................................................................. 2-43 表 3-1 美国农业部太平洋县农业普查 .......................................................................................... 3-6 表 3-2 当地重要农业用地土壤类型 .............................................................................................. 3-7 表 3-3 蓄水层补给区土壤类型 ...................................................................................................... 3-15 表 4-1 太平洋县家庭收入 ............................................................................................................. 4-4 表 4-2 2020 财年公平市场租金 ............................................................................................................. 4-4 表 4-3 太平洋县住房特征 ............................................................................................................. 4-6 表 4-4 2010 - 2019 年新建住房单元 ............................................................................................. 4-7 表 4-5 OFM 人口预测 ................................................................................................................ 4-8 表 5-1 一般高速公路高峰时段容量 .......................................................................................... 5-12 表 5-2 太平洋县道路 2009 年和 2017 年服务水平 ........................................................................ 5-14 表 5-3 州道路 2010 年和 2019 年服务水平 ............................................................................. 5-15 表 5-4 太平洋县道路预计 2040 年服务水平 .............................................................................表 5-5 州内路线预计 2040 年服务水平 .......................................................................................... 5-16 表 5-6 选定道路和高速公路预计 2040 年服务高峰水平 ...................................................................................... 5-17 表 5-7 计划中的县级交通改善项目 ...................................................................................................... 5-19 表 6-1 活跃的“A”组供水系统和区域 – 允许的服务连接 ............................................................................................. 6-7 表 6-2 活跃的“B”组供水系统和区域 – 允许的服务连接 ............................................................................................................. 6-9 表 6-3 县级建筑物清单 ............................................................................................................. 6-15 表6-4 规划区内的公园 ................................................................................................................ 6-18 表 6-5 休闲用地需求 ................................................................................................................ 6-18 表 6-6 太平洋县规划的公园和休闲项目 ................................................................................ 6-20 表 6-7 各学区历史入学人数 ...................................................................................................... 6-25 表 6-8 防风雨改造项目总清单 ...................................................................................................... 6-34 表 6-9 交通项目总清单 ............................................................................................................. 6-35 表 7-1 PUD 编号 2 报告的太平洋县峰值负荷 ........................................................................................ 7-46-25 表 6-8 风暴改善项目主列表..................................................................................................... 6-34 表 6-9 交通项目主列表......................................................................................................................... 6-35 表 7-1 PUD NO. 2 报告的太平洋县峰值负荷......................................................................................... 7-46-25 表 6-8 风暴改善项目主列表..................................................................................................... 6-34 表 6-9 交通项目主列表......................................................................................................................... 6-35 表 7-1 PUD NO. 2 报告的太平洋县峰值负荷......................................................................................... 7-4
摘要:美国国家海洋和大气管理局利用国家水模型 (NWM) 为美国 270 万条河流位置开发了非常高分辨率的流量预报。然而,量化未测量位置的不确定性和预测可靠性存在相当大的挑战。提出了一种数据科学方法来应对这一挑战。分析了 2018 年 12 月至 2021 年 8 月阿拉巴马州和佐治亚州的长期每日流量预报。使用标准确定性指标在 389 个观测到的 USGS 流量测量位置对预测进行评估。接下来,使用流域的生物物理特征对预测误差进行分组,包括排水面积、土地利用、土壤类型和地形指数。NWM 预测对于较大的森林流域比较小的城镇流域更为准确。NWM 预测大大高估了城镇流域的径流量。分类和回归树分析证实了预测误差对生物物理特征的依赖性。使用生物物理特征、NWM 预测作为输入,预测误差作为输出,开发了一个由六层 [深度学习 (DL)] 组成的密集连接神经网络模型。DL 模型成功地从在测量位置训练的领域中学习了位置不变的可迁移知识,并应用学习到的模型来估计未测量位置的预测误差。对测量数据进行时间和空间分割显示,在混合 NWM-DL 模型中,捕捉到预测范围内观测值的概率 (82% 6 3%) 比仅 NWM 预测 (21% 6 1%) 显著提高。注意到 DL 模型中过度受限的 NWM 预测与增加的预测不确定性范围之间存在权衡。
Biostimulans是可以改善养分可用性,养分吸收,营养利用效率和对非生物胁迫的耐受性的产品,目的是增加植物的生长和产量。在过去的几十年中,生物刺激物的兴趣和市场增长,预计将具有较大的复合年增长率。每年市场上的产品数量增加,销售机构将其促进其收益率上升和盈利。本论文旨在研究产物泡(Azotobacter salinestris Cect 9690)产品对不同温度和N级别春季小麦的N蓄能的影响。这项研究是作为锅实验进行的,在该实验中,在Ultuna的BioCentrum气候室中培养了有没有供应泼妇的春季小麦。该实验具有三因素的分开图设计,其温度状态为主要图,N速率和泼妇处理作为子图。两个温度方案之间的泼妇治疗的影响有所不同。在高温下,与未经处理的对照相比,在泼妇处理的植物中,具有显着的较高的N蓄能,对应于4,09 kgn/ha。另一方面,在低温下,与维克兰处理过的小麦相比,未经处理的对照中的N蓄能明显高出5,90 kgn/ha。在任何温度下,N级和泼妇处理之间均无显着相互作用。必须研究细菌在不同环境条件下的工作方式。参数(例如土壤类型,pH,温度和品种)可以影响细菌的作用,并且重要的是要了解这些参数与细菌之间的相互作用是如何工作的。这项研究的结果表明,需要进行更多的研究来保证氮杂杆菌的n固定。
抗菌素抵抗(AMR)构成了关键的全球健康威胁,使全球感染管理变得复杂。关于世界卫生组织(WHO)在2019年释放的抗生素抗药性患病率的数据导致127万人死亡(Murray等,2022; Who,2023)。此外,世界银行估计,到2050年,AMR的经济影响可能会损失高达1万亿美元的医疗保健费用,而到2030年,国内生产总值(GDP)损失了3.4万亿美元(Jonas等人,2017年)。迫切需要发现新药替代耐药性抗生素已变得越来越重要。最大的新抗生素生产商来源之一来自土壤,其中99%的微生物物种。抗菌化合物是由土壤中的微生物产生的,由于传统培养技术的局限性,这些化合物在实验室中通常仍然无法培养,而传统培养技术无法复制微生物的自然栖息地(Choi等,2015; Bhattacharjee,2022222)。具有获取新抗生素剂的巨大潜力的土壤类型是泥炭土(Kujala等,2018; Liu等,2022; Atapattu等,2023)。泥炭土包含富含养分的有机沉积物,这些养分支持微生物生长和多样性(Nawan and Wasito,2020)。必须利用泥炭土中丰富的微生物含量来开发新的抗生素。当前的微生物培养技术通常仅限于微生物的一部分,从而限制了二级代谢产物的分离。克服这些局限性需要创新的方法来培养产生抗生素的微生物,这些微生物在实验室条件下仍然无法养活。未经培养的土壤技术(UST)或原位孵育是最新的发展之一,涉及使用环境中存在的自然生长因子进行培养(Berdy等,2017; Chaudhary等,2019)。
抽象有机物在土壤中的积累被理解为矿物相关(分解,微生物衍生的)有机物与自由颗粒(较少分解的植物衍生)有机物之间的动态。然而,从区域到全球尺度,主要土壤有机碳(SOC)部分的模式和驱动因素尚不清楚,并且与土壤类型之间的子宫遗传学变异保持不佳。在这里,我们将与淤泥和粘土大小的颗粒(S + C),稳定的聚集体(>63μm,SA)和颗粒有机物(POM)相关的SOC与沿着地理气候梯度采样的各种草地表土与颗粒有机物(POM)分开。两种矿物相关的部分(S + C&SA)对SOC的相对贡献在整个梯度中差异很大,而POM从来都不是主要的SOC分数。稳定的骨料(>63μm)在富含碳 - 富含碳的土壤中成为主要的SOC分数。稳定聚集体中碳的分解程度(>63μm)始终在S + C和POM级分之间,并且没有沿研究梯度变化。相比之下,与S + C分数相关的碳在富含碳 - 贫民土壤中的微生物分解较少。S + C部分中SOC的量与Pedogenic氧化物的含量和质地呈正相关,而与稳定聚集体(>63μM)相关的SOC量与Pedogenic氧化物含量呈正相关,并与温度负相关。我们提出了我们发现的概念摘要,该概念将稳定骨料(>63μm)与其他主要SOC馏分的作用整合在一起,并说明了它们在(土壤)环境梯度之间的重要性变化。
摘要:本文综述了有关聚合物在人行道和岩土工程中使用土壤稳定的研究。首先,讨论了影响广泛使用聚合物类别的有效性的特性,包括地球聚合物,生物聚合物和合成有机聚合物。这些包括地球聚合物的前体和活化剂,分子量,粒径,电荷,构象,溶解性,粘度,pH和有机聚合物的水分行为的类型和比率。接下来,本文审查了使用各种聚合物类别的土壤稳定的机制。有机聚合物 - 粘合相互作用的关键机制是静电力和熵的增加,这取决于聚合物是阳离子,中性还是阴离子的不同。另一方面,聚合物与主要由沙子组成的粗粒土壤之间的相互作用主要归因于三种类型的结构变化:覆盖砂颗粒的薄膜,连接了无接触的相邻颗粒的聚合物扎带的形成以及颗粒之间粘附的发展。地球聚合物稳定的机制是通过形成钠和/或钙铝硅酸盐凝胶的形成,该氧化物结合周围的土壤颗粒并将其变成更密集,更牢固的基质。讨论了使用聚合物稳定后土壤类型的工程特性,包括强度提高,渗透率降低,膨胀和收缩抑制以及耐用性和稳定性增强。最后,本文强调了更广泛使用土壤聚合物稳定的挑战,包括有限的评估标准,生命周期成本考虑和水分敏感性。为此,建议对土壤稳定中广泛使用聚合物的一些未来研究方向,包括建立标准测试方案的需要,评估聚合物稳定土壤的原位特性,解决耐用性问题的解决方案以及进一步研究稳定机制的进一步检查。
ITK的突出特征包括它是在基层开发的本地知识,从一代人口头传播到下一代,可以使用可用的本地资源来开发全球知识的重要组成部分,有助于在不同社区之间交换文化知识,并且是穷人生活的重要组成部分,有助于解决他们的问题。印度的土著社区通过对当地环境的实验,观察和适应性的感觉来塑造农业实践至关重要。这些社区包括部落群体,基于种姓的农业社区和农村工匠对当地生态系统,土壤类型,气候模式和作物种类有深刻的了解等。农业中土著知识系统的演变反映了数千年来人类社会及其自然环境之间的动态相互作用。土著农业实践不断发展,以响应不断变化的社会文化,经济和生态因素,并通过口头传统,仪式,民俗和基于社区的机构保存和传播。土著农民开发了用于土壤生育能力管理,节水,植物保护,种子选择等的创新技术。基于他们的传统智慧,并传给了几代人。他们对当地动植物的亲密知识使他们能够创建各种农业生态系统,这些生态系统对环境波动和害虫爆发具有弹性。ITK在印度农业中的重要性可以在以下方面可见: -土著社区中知识传播的过程涉及体验式学习,讲故事,学徒制和参与性观察的平淡。年轻一代继承并采用了传统知识来应对当代挑战,因此发现土著农业实践会经历创新和更新的过程,以确保其在迅速变化的世界中的相关性和韧性。近年来,人们对可持续农业,生物多样性保护和气候变化适应的土著知识的价值越来越多。与政府,非政府组织和研究机构与当地社区合作的政府,非政府组织和研究机构的势头取得了努力,以维护这种宝贵的文化遗产,为后代提供了这种宝贵的文化遗产。
酵母细胞是单细胞微生物,可以在包括土壤,植物和动物在内的各种环境中找到。它们在食品和发酵行业中很重要,在食品和发酵行业中,它们用于生产各种酒精饮料,面包和奶酪。酵母细胞也已被用于其在生物技术中的作用,并用作遗传研究的模型生物。酵母细胞在土壤生态系统中起着至关重要的作用,有助于养分循环,植物健康和整体土壤生态学。本研究的重点是研究地点中土壤样品的酵母细胞的分离和表征。土壤样品是从卡莱布大学的五个地点收集的,代表了不同的栖息地和土壤类型。酵母分离出来。孤立的酵母是根据殖民地,形态和生化特征来表征的。分离并鉴定出二十种酵母菌分离株掉入属中;念珠菌,地理物种和糖疗种。念珠菌物种最丰富,隔离率为45%。这项研究有助于我们理解土壤生态系统中的酵母。这项研究为土壤提供了廉价酵母细胞来源的见解。这些酵母在农业,生物技术和环境修复中的潜在应用可以利用。关键词:酵母,土壤,卡莱布大学,拉各斯简介酵母细胞是单细胞微生物,可以在包括土壤,植物和动物在内的各种环境中找到。它们在食品和发酵行业中很重要,在食品和发酵行业中,它们用于生产各种酒精饮料,面包和奶酪(Legras等,2007)。酵母细胞也已被用于其在生物技术中的作用,并作为遗传研究的模型生物(Legras等,2007)。在不同环境中酵母细胞的隔离和鉴定已成为几项研究的主题(Chao等,2019)。
抽象的红树林生态系统对沿海稳定性做出了重大贡献,提供了诸如碳质量和风暴保护之类的基本服务。印度尼西亚红树林的康复对于恢复因沿海发展而破坏的生态功能至关重要。本研究旨在比较有机物的比率 - 碳(C),氮(N)和磷(P) - 在巴厘岛贝诺阿湾的自然和修复的红树林土壤中。这项研究是在天然和修复的红树林中的八个地块上进行的,土壤样品使用钻的深度为0至100 cm。使用点火损失(LOI)的土壤有机碳(SOC),总氮(TKN)的FIA方法以及总磷(TP)的比色硫酸盐消化法(TP)进行了有机物分析。结果表明,与天然红树林相比,康复的人树林的总有机碳(1.1±0.5%)较低(1.1±0.5%)和较高的总氮含量(0.07±0.02%)。总磷含量也较低(0.010±0.003%),这可能是由于粘土含量的增加,与土壤中磷结合的粘土含量增加。几个参数与有机物密切相关,包括散装密度,土壤类型,氧化还原电位(ORP),pH和溶解的氧气(DO)(DO),以及红树林的结构,例如树木和幼苗和幼苗密度,茎的,茎的,盖层,盖层,盖层和树枝状况。有机物含量和C:N比率的变化表明,修复的红树林生态系统尚未达到自然生态系统的稳定性。这反映在改变的生物地球化学周期和养分可用性中。因此,需要进行持续的努力,以确保红树林康复过程更全面地恢复。这些发现强调需要在红树林康复中进行有针对性的干预措施,以恢复营养平衡,优化碳储存并增强热带沿海生态系统气候变化的弹性。